These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 3499205)

  • 41. The neural substrates for the rewarding and dopamine-releasing effects of medial forebrain bundle stimulation have partially discrepant frequency responses.
    Cossette MP; Conover K; Shizgal P
    Behav Brain Res; 2016 Jan; 297():345-58. PubMed ID: 26477378
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pharmacological characterisation of dopamine overflow in the striatum of the normal and MPTP-treated common marmoset, studied in vivo using fast cyclic voltammetry, nomifensine and sulpiride.
    Earl CD; Sautter J; Xie J; Kruk ZL; Kupsch A; Oertel WH
    J Neurosci Methods; 1998 Dec; 85(2):201-9. PubMed ID: 9874156
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sub-second striatal dopamine release measured by in vivo voltammetry.
    Stamford JA; Kruk ZL; Millar J
    Brain Res; 1986 Sep; 381(2):351-5. PubMed ID: 3489507
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.
    Bergstrom BP; Garris PA
    J Neurosci Methods; 1999 Mar; 87(2):201-8. PubMed ID: 11230817
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Correlation between iron levels and degeneration of dopaminergic neurons in rat nigrostriatal system during the early 6-OHDA lesions in medial forebrain bundle].
    Wang J; Jiang H; Xie JX
    Sheng Li Xue Bao; 2003 Aug; 55(4):422-7. PubMed ID: 12937822
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chronoamperometry in vivo: does it interfere with spontaneous neuronal activity in the brain?
    Hefti F; Felix D
    J Neurosci Methods; 1983 Feb; 7(2):151-6. PubMed ID: 6300566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study.
    Garris PA; Wightman RM
    J Neurosci; 1994 Jan; 14(1):442-50. PubMed ID: 8283249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-time characterization of dopamine overflow and uptake in the rat striatum.
    Wightman RM; Amatore C; Engstrom RC; Hale PD; Kristensen EW; Kuhr WG; May LJ
    Neuroscience; 1988 May; 25(2):513-23. PubMed ID: 3399057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simultaneous recording of substantia nigra neurons and voltammetric release of dopamine in the caudate of behaving cats.
    Trulson ME
    Brain Res Bull; 1985 Aug; 15(2):221-3. PubMed ID: 4041929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra.
    Hirata K; Yim CY; Mogenson GJ
    Brain Res; 1984 Oct; 321(1):1-8. PubMed ID: 6093925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo.
    Benoit-Marand M; Borrelli E; Gonon F
    J Neurosci; 2001 Dec; 21(23):9134-41. PubMed ID: 11717346
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of electrical stimulation of brain reward sites on release of dopamine in rat: an in vivo electrochemical study.
    Gratton A; Hoffer BJ; Gerhardt GA
    Brain Res Bull; 1988 Aug; 21(2):319-24. PubMed ID: 3263894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electro-acupuncture stimulation protects dopaminergic neurons from inflammation-mediated damage in medial forebrain bundle-transected rats.
    Liu XY; Zhou HF; Pan YL; Liang XB; Niu DB; Xue B; Li FQ; He QH; Wang XH; Wang XM
    Exp Neurol; 2004 Sep; 189(1):189-96. PubMed ID: 15296849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon fiber microelectrodes with multiple sensing elements for in vivo voltammetry.
    Dressman SF; Peters JL; Michael AC
    J Neurosci Methods; 2002 Sep; 119(1):75-81. PubMed ID: 12234638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity-dependent changes in substantia nigra gamma-aminobutyric acid.
    Swift RM; Hoffmann PC; Heller A
    Brain Res; 1978 Nov; 156(1):181-6. PubMed ID: 308835
    [No Abstract]   [Full Text] [Related]  

  • 56. Activation by nicotine of striatal neurons receiving excitatory input from the substantia nigra via dopamine release.
    Yu H; Matsubayashi H; Amano T; Cai J; Sasa M
    Brain Res; 2000 Jul; 872(1-2):223-6. PubMed ID: 10924698
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The spontaneous firing patterns of forebrain neurons. V. Time course of changes in caudate unit activity following dopamine-depleting lesions.
    Garcia-Rill E; Hull CD; Cherubini E; Levine MS; Buchwald NA
    Brain Res; 1980 May; 190(2):415-24. PubMed ID: 6966177
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of L-dopa on in vivo dopamine release from nigrostriatal bundle neurons.
    Keller RW; Kuhr WG; Wightman RM; Zigmond MJ
    Brain Res; 1988 Apr; 447(1):191-4. PubMed ID: 3382951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spinal cord dopaminergic neurons: evidence for an uncrossed nigrospinal pathway.
    Commissiong JW; Gentleman S; Neff NH
    Neuropharmacology; 1979 Jun; 18(6):565-8. PubMed ID: 481709
    [No Abstract]   [Full Text] [Related]  

  • 60. Dopaminergic neurons: reversal of effects elicited by gamma-butyrolactone by stimulation of the nigro-neostriatal pathway.
    Murrin LC; Roth RH
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Oct; 295(1):15-20. PubMed ID: 12482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.