These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34993183)

  • 1. Effects of Tai-Chi Chuan Practice on Patterns and Stability of Lower Limb Inter-Joint Coordination During Obstructed Gait in the Elderly.
    Kuo CC; Chen SC; Wang JY; Ho TJ; Lin JG; Lu TW
    Front Bioeng Biotechnol; 2021; 9():739722. PubMed ID: 34993183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic multi-joint kinematic strategies to reduce tripping risks during obstacle-crossing in older long-term Tai-Chi Chuan practitioners.
    Huang HP; Kuo CC; Lu SH; Chen SC; Ho TJ; Lu TW
    Front Aging Neurosci; 2022; 14():961515. PubMed ID: 36247991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral knee osteoarthritis does not affect inter-joint coordination in older adults with gait deviations during obstacle-crossing.
    Wang TM; Yen HC; Lu TW; Chen HL; Chang CF; Liu YH; Tsai WC
    J Biomech; 2009 Oct; 42(14):2349-56. PubMed ID: 19679309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of long-term Tai-Chi Chuan practice on whole-body balance control during obstacle-crossing in the elderly.
    Kuo CC; Chen SC; Chen TY; Ho TJ; Lin JG; Lu TW
    Sci Rep; 2022 Feb; 12(1):2660. PubMed ID: 35177707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age effects on the inter-joint coordination during obstacle-crossing.
    Yen HC; Chen HL; Liu MW; Liu HC; Lu TW
    J Biomech; 2009 Nov; 42(15):2501-6. PubMed ID: 19665128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparisons of the inter-joint coordination between leading and trailing limbs when crossing obstacles of different heights.
    Lu TW; Yen HC; Chen HL
    Gait Posture; 2008 Feb; 27(2):309-15. PubMed ID: 17499992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Best-Compromise Control Strategy Between Mechanical Energy Expenditure and Foot Clearance for Obstacle-Crossing in Older Adults: Effects of Tai-Chi Chuan Practice.
    Kuo CC; Chen SC; Wang JY; Ho TJ; Lu TW
    Front Bioeng Biotechnol; 2021; 9():774771. PubMed ID: 34926422
    [No Abstract]   [Full Text] [Related]  

  • 8. Stepping over an obstacle increases the motions and moments of the joints of the trailing limb in young adults.
    Chou LS; Draganich LF
    J Biomech; 1997 Apr; 30(4):331-7. PubMed ID: 9075000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-joint coordination during obstacle crossing in people with diabetic neuropathy.
    Rahimzadeh S; Ghanavati T; Pourreza S; Tavakkoli Oskouei S; Zakerkish M; Kosarian Z; Goharpey S; Mehravar M
    J Biomech; 2020 May; 105():109765. PubMed ID: 32307183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical risk factors for tripping during obstacle--Crossing with the trailing limb in patients with type II diabetes mellitus.
    Hsu WC; Liu MW; Lu TW
    Gait Posture; 2016 Mar; 45():103-9. PubMed ID: 26979890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic strategies for obstacle-crossing in older adults with mild cognitive impairment.
    Lu SH; Kuan YC; Wu KW; Lu HY; Tsai YL; Chen HH; Lu TW
    Front Aging Neurosci; 2022; 14():950411. PubMed ID: 36583190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concussion induces gait inter-joint coordination variability under conditions of divided attention and obstacle crossing.
    Chiu SL; Osternig L; Chou LS
    Gait Posture; 2013 Sep; 38(4):717-22. PubMed ID: 23578796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Children with Duchenne muscular dystrophy display specific kinematic strategies during obstacle-crossing.
    Wu KW; Yu CH; Huang TH; Lu SH; Tsai YL; Wang TM; Lu TW
    Sci Rep; 2023 Oct; 13(1):17094. PubMed ID: 37816796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic strategies for obstacle-crossing in patients with isolated posterior cruciate ligament deficiency.
    Kuo MY; Hong SW; Leu TH; Kuo CC; Lu TW; Wang JH
    Gait Posture; 2017 Sep; 57():21-27. PubMed ID: 28551467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping.
    Chou LS; Draganich LF
    J Biomech; 1998 Aug; 31(8):685-91. PubMed ID: 9796668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability in inter-joint coordination during walking of elderly adults and its association with clinical balance measures.
    Chiu SL; Chou LS
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):454-8. PubMed ID: 23538128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patients with type II diabetes mellitus display reduced toe-obstacle clearance with altered gait patterns during obstacle-crossing.
    Liu MW; Hsu WC; Lu TW; Chen HL; Liu HC
    Gait Posture; 2010 Jan; 31(1):93-9. PubMed ID: 19875290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower limbs inter-joint coordination and variability during typical Tai Chi movement in older female adults.
    Zhao J; Han W; Tang H
    Front Physiol; 2023; 14():1164923. PubMed ID: 37200836
    [No Abstract]   [Full Text] [Related]  

  • 19. Biomechanical strategies for successful obstacle crossing with the trailing limb in older adults with medial compartment knee osteoarthritis.
    Chen HL; Lu TW; Wang TM; Huang SC
    J Biomech; 2008; 41(4):753-61. PubMed ID: 18177877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of walking speed on obstacle crossing in healthy young and healthy older adults.
    Draganich LF; Kuo CE
    J Biomech; 2004 Jun; 37(6):889-96. PubMed ID: 15111076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.