These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34993527)

  • 1. Closing Water and Nutrient Cycles in Urban Wastewater Management: How to Make an Academic Software Available to General Practice.
    Schuur JS; Spuhler D
    Circ Econ Sustain; 2021; 1(3):1087-1105. PubMed ID: 34993527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing sanitation planning options: A tool for systematic consideration of novel technologies and systems.
    Spuhler D; Germann V; Kassa K; Ketema AA; Sherpa AM; Sherpa MG; Maurer M; Lüthi C; Langergraber G
    J Environ Manage; 2020 Oct; 271():111004. PubMed ID: 32778289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex-ante quantification of nutrient, total solids, and water flows in sanitation systems.
    Spuhler D; Scheidegger A; Maurer M
    J Environ Manage; 2021 Feb; 280():111785. PubMed ID: 33339625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of sanitation systems for resource recovery: Influence of configurations and single technology components.
    Spuhler D; Scheidegger A; Maurer M
    Water Res; 2020 Nov; 186():116281. PubMed ID: 32949886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource-oriented sanitation: Identifying appropriate technologies and environmental gains by coupling Santiago software and life cycle assessment in a Brazilian case study.
    Lima PM; Lopes TAS; Queiroz LM; McConville JR
    Sci Total Environ; 2022 Sep; 837():155777. PubMed ID: 35545164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of sanitation system options for urban planning considering novel technologies.
    Spuhler D; Scheidegger A; Maurer M
    Water Res; 2018 Nov; 145():259-278. PubMed ID: 30144588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying sustainable water management concepts in rural and urban areas: some thoughts about reasons, means and needs.
    Wilderer PA
    Water Sci Technol; 2004; 49(7):8-16. PubMed ID: 15195411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm.
    Masi F; Rizzo A; Regelsberger M
    J Environ Manage; 2018 Jun; 216():275-284. PubMed ID: 29224716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DMsan: A Multi-Criteria Decision Analysis Framework and Package to Characterize Contextualized Sustainability of Sanitation and Resource Recovery Technologies.
    Lohman HAC; Morgan VL; Li Y; Zhang X; Rowles LS; Cook SM; Guest JS
    ACS Environ Au; 2023 May; 3(3):179-192. PubMed ID: 37215438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Municipal water reuse for urban agriculture in Namibia: Modeling nutrient and salt flows as impacted by sanitation user behavior.
    Woltersdorf L; Scheidegger R; Liehr S; Döll P
    J Environ Manage; 2016 Mar; 169():272-84. PubMed ID: 26773431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological Sanitation--a way to solve global sanitation problems?
    Langergraber G; Muellegger E
    Environ Int; 2005 Apr; 31(3):433-44. PubMed ID: 15734195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of how decision support tools address resource recovery in sanitation systems.
    Ddiba D; Andersson K; Dickin S; Ekener E; Finnveden G
    J Environ Manage; 2023 Sep; 342():118365. PubMed ID: 37320927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conceptual framework for a multi-criteria decision support tool to select technologies for resource recovery from urban wastewater.
    Sucu S; van Schaik MO; Esmeli R; Ouelhadj D; Holloway T; Williams JB; Cruddas P; Martinson DB; Chen WS; Cappon HJ
    J Environ Manage; 2021 Dec; 300():113608. PubMed ID: 34509814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplifying Progress toward Multiple Development Goals through Resource Recovery from Sanitation.
    Trimmer JT; Cusick RD; Guest JS
    Environ Sci Technol; 2017 Sep; 51(18):10765-10776. PubMed ID: 28875704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taking the water out of "wastewater": An ineluctable oxymoron for urban water cycle sustainability.
    Capodaglio AG
    Water Environ Res; 2020 Dec; 92(12):2030-2040. PubMed ID: 32510735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technological options for the management of biosolids.
    Wang H; Brown SL; Magesan GN; Slade AH; Quintern M; Clinton PW; Payn TW
    Environ Sci Pollut Res Int; 2008 Jun; 15(4):308-17. PubMed ID: 18488261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery.
    Daigger GT
    Water Environ Res; 2009 Aug; 81(8):809-23. PubMed ID: 19774858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A framework for planning of sustainable water and sanitation systems in peri-urban areas.
    Törnqvist R; Norström A; Kärrman E; Malmqvist PA
    Water Sci Technol; 2008; 58(3):563-70. PubMed ID: 18725722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decision model for selecting sustainable drinking water supply and greywater reuse systems for developing communities with a case study in Cimahi, Indonesia.
    Henriques JJ; Louis GE
    J Environ Manage; 2011 Jan; 92(1):214-22. PubMed ID: 20888682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.