BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34993572)

  • 1. A deep convolutional neural network-based automatic detection of brain metastases with and without blood vessel suppression.
    Kikuchi Y; Togao O; Kikuchi K; Momosaka D; Obara M; Van Cauteren M; Fischer A; Ishigami K; Hiwatashi A
    Eur Radiol; 2022 May; 32(5):2998-3005. PubMed ID: 34993572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D MR sequence capable of simultaneous image acquisitions with and without blood vessel suppression: utility in diagnosing brain metastases.
    Kikuchi K; Hiwatashi A; Togao O; Yamashita K; Yoneyama M; Obara M; Kishimoto J; Yoshiura T; Honda H
    Eur Radiol; 2015 Apr; 25(4):901-10. PubMed ID: 25417126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and evaluation of a gated high-resolution neural network for automatic brain metastasis detection and segmentation.
    Qu J; Zhang W; Shu X; Wang Y; Wang L; Xu M; Yao L; Hu N; Tang B; Zhang L; Lui S
    Eur Radiol; 2023 Oct; 33(10):6648-6658. PubMed ID: 37186214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
    Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G
    J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning for brain metastasis detection and segmentation in longitudinal MRI data.
    Huang Y; Bert C; Sommer P; Frey B; Gaipl U; Distel LV; Weissmann T; Uder M; Schmidt MA; Dörfler A; Maier A; Fietkau R; Putz F
    Med Phys; 2022 Sep; 49(9):5773-5786. PubMed ID: 35833351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-learned 3D black-blood imaging using automatic labelling technique and 3D convolutional neural networks for detecting metastatic brain tumors.
    Jun Y; Eo T; Kim T; Shin H; Hwang D; Bae SH; Park YW; Lee HJ; Choi BW; Ahn SS
    Sci Rep; 2018 Jun; 8(1):9450. PubMed ID: 29930257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network.
    Charron O; Lallement A; Jarnet D; Noblet V; Clavier JB; Meyer P
    Comput Biol Med; 2018 Apr; 95():43-54. PubMed ID: 29455079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additional MR contrast dosage for radiologists' diagnostic performance in detecting brain metastases: a systematic observer study at 3 T.
    Togao O; Hiwatashi A; Yamashita K; Kikuchi K; Yoshiura T; Honda H
    Jpn J Radiol; 2014 Sep; 32(9):537-44. PubMed ID: 24957183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-Learning Detection of Cancer Metastases to the Brain on MRI.
    Zhang M; Young GS; Chen H; Li J; Qin L; McFaline-Figueroa JR; Reardon DA; Cao X; Wu X; Xu X
    J Magn Reson Imaging; 2020 Oct; 52(4):1227-1236. PubMed ID: 32167652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Detection and Segmentation of Brain Metastases in Malignant Melanoma: Evaluation of a Dedicated Deep Learning Model.
    Pennig L; Shahzad R; Caldeira L; Lennartz S; Thiele F; Goertz L; Zopfs D; Meißner AK; Fürtjes G; Perkuhn M; Kabbasch C; Grau S; Borggrefe J; Laukamp KR
    AJNR Am J Neuroradiol; 2021 Apr; 42(4):655-662. PubMed ID: 33541907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based algorithm improves radiologists' performance in lung cancer bone metastases detection on computed tomography.
    Huo T; Xie Y; Fang Y; Wang Z; Liu P; Duan Y; Zhang J; Wang H; Xue M; Liu S; Ye Z
    Front Oncol; 2023; 13():1125637. PubMed ID: 36845701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images.
    He Y; Guo J; Ding X; van Ooijen PMA; Zhang Y; Chen A; Oudkerk M; Xie X
    Eur Radiol; 2019 Oct; 29(10):5441-5451. PubMed ID: 30859281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
    Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a deep-learning model for detecting brain metastases on 3D post-contrast MRI: a multi-center multi-reader evaluation study.
    Yin S; Luo X; Yang Y; Shao Y; Ma L; Lin C; Yang Q; Wang D; Luo Y; Mai Z; Fan W; Zheng D; Li J; Cheng F; Zhang Y; Zhong X; Shen F; Shao G; Wu J; Sun Y; Luo H; Li C; Gao Y; Shen D; Zhang R; Xie C
    Neuro Oncol; 2022 Sep; 24(9):1559-1570. PubMed ID: 35100427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection and classification of rib fractures based on patients' CT images and clinical information via convolutional neural network.
    Zhou QQ; Tang W; Wang J; Hu ZC; Xia ZY; Zhang R; Fan X; Yong W; Yin X; Zhang B; Zhang H
    Eur Radiol; 2021 Jun; 31(6):3815-3825. PubMed ID: 33201278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
    Jünger ST; Hoyer UCI; Schaufler D; Laukamp KR; Goertz L; Thiele F; Grunz JP; Schlamann M; Perkuhn M; Kabbasch C; Persigehl T; Grau S; Borggrefe J; Scheffler M; Shahzad R; Pennig L
    J Magn Reson Imaging; 2021 Nov; 54(5):1608-1622. PubMed ID: 34032344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
    Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977
    [No Abstract]   [Full Text] [Related]  

  • 18. Multidimensional Deep Learning Reduces False-Positives in the Automated Detection of Cerebral Aneurysms on Time-Of-Flight Magnetic Resonance Angiography: A Multi-Center Study.
    Terasaki Y; Yokota H; Tashiro K; Maejima T; Takeuchi T; Kurosawa R; Yamauchi S; Takada A; Mukai H; Ohira K; Ota J; Horikoshi T; Mori Y; Uno T; Suyari H
    Front Neurol; 2021; 12():742126. PubMed ID: 35115991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural network for accelerating the computation of the extended Tofts model in dynamic contrast-enhanced magnetic resonance imaging.
    Fang K; Wang Z; Li Z; Wang B; Han G; Cheng Z; Chen Z; Lan C; Zhang Y; Zhao P; Jin X; Liu Y; Bai R
    J Magn Reson Imaging; 2021 Jun; 53(6):1898-1910. PubMed ID: 33382513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.