BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34993572)

  • 41. MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging.
    Zhou Z; Sanders JW; Johnson JM; Gule-Monroe M; Chen M; Briere TM; Wang Y; Son JB; Pagel MD; Ma J; Li J
    Radiother Oncol; 2020 Dec; 153():189-196. PubMed ID: 32937104
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [High definition MRI rectal lymph node aided diagnostic system based on deep neural network].
    Zhou YP; Li S; Zhang XX; Zhang ZD; Gao YX; Ding L; Lu Y
    Zhonghua Wai Ke Za Zhi; 2019 Feb; 57(2):108-113. PubMed ID: 30704213
    [No Abstract]   [Full Text] [Related]  

  • 43. Performance evaluation of radiologists with artificial neural network for differential diagnosis of intra-axial cerebral tumors on MR images.
    Yamashita K; Yoshiura T; Arimura H; Mihara F; Noguchi T; Hiwatashi A; Togao O; Yamashita Y; Shono T; Kumazawa S; Higashida Y; Honda H
    AJNR Am J Neuroradiol; 2008 Jun; 29(6):1153-8. PubMed ID: 18388216
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI.
    Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C
    Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brain metastases detection on MR by means of three-dimensional tumor-appearance template matching.
    Pérez-Ramírez Ú; Arana E; Moratal D
    J Magn Reson Imaging; 2016 Sep; 44(3):642-52. PubMed ID: 26934581
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of model generalizability for unseen data: Methodology and case study in brain metastases detection in T1-Weighted contrast-enhanced 3D MRI.
    Dikici E; Nguyen XV; Takacs N; Prevedello LM
    Comput Biol Med; 2023 Jun; 159():106901. PubMed ID: 37068317
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differentiation of Benign from Malignant Pulmonary Nodules by Using a Convolutional Neural Network to Determine Volume Change at Chest CT.
    Ohno Y; Aoyagi K; Yaguchi A; Seki S; Ueno Y; Kishida Y; Takenaka D; Yoshikawa T
    Radiology; 2020 Aug; 296(2):432-443. PubMed ID: 32452736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers.
    Faron A; Sichtermann T; Teichert N; Luetkens JA; Keulers A; Nikoubashman O; Freiherr J; Mpotsaris A; Wiesmann M
    Clin Neuroradiol; 2020 Sep; 30(3):591-598. PubMed ID: 31227844
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diagnostic performance for pulmonary adenocarcinoma on CT: comparison of radiologists with and without three-dimensional convolutional neural network.
    Yanagawa M; Niioka H; Kusumoto M; Awai K; Tsubamoto M; Satoh Y; Miyata T; Yoshida Y; Kikuchi N; Hata A; Yamasaki S; Kido S; Nagahara H; Miyake J; Tomiyama N
    Eur Radiol; 2021 Apr; 31(4):1978-1986. PubMed ID: 33011879
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network.
    Fujioka T; Kubota K; Mori M; Kikuchi Y; Katsuta L; Kasahara M; Oda G; Ishiba T; Nakagawa T; Tateishi U
    Jpn J Radiol; 2019 Jun; 37(6):466-472. PubMed ID: 30888570
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Novel Deep Learning Algorithm for the Automatic Detection of High-Grade Gliomas on T2-Weighted Magnetic Resonance Images: A Preliminary Machine Learning Study.
    Atici MA; Sagiroglu S; Celtikci P; Ucar M; Borcek AO; Emmez H; Celtikci E
    Turk Neurosurg; 2020; 30(2):199-205. PubMed ID: 31608975
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-Dimensional Convolutional Neural Network for Prostate MRI Segmentation and Comparison of Prostate Volume Measurements by Use of Artificial Neural Network and Ellipsoid Formula.
    Lee DK; Sung DJ; Kim CS; Heo Y; Lee JY; Park BJ; Kim MJ
    AJR Am J Roentgenol; 2020 Jun; 214(6):1229-1238. PubMed ID: 32208009
    [No Abstract]   [Full Text] [Related]  

  • 54. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images.
    Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB
    Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound.
    Ko SY; Lee JH; Yoon JH; Na H; Hong E; Han K; Jung I; Kim EK; Moon HJ; Park VY; Lee E; Kwak JY
    Head Neck; 2019 Apr; 41(4):885-891. PubMed ID: 30715773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A two-step automated quality assessment for liver MR images based on convolutional neural network.
    Wang Y; Song Y; Wang F; Sun J; Gao X; Han Z; Shi L; Shao G; Fan M; Yang G
    Eur J Radiol; 2020 Mar; 124():108822. PubMed ID: 31951895
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [A preliminary investigation on a deep learning convolutional neural networks based pulmonary tuberculosis CT diagnostic model].
    Wu SC; Wang XJ; Ji JY; Geng G; Zhang ZH; Hou DL
    Zhonghua Jie He He Hu Xi Za Zhi; 2021 May; 44(5):450-455. PubMed ID: 34865365
    [No Abstract]   [Full Text] [Related]  

  • 58. Using decision curve analysis to benchmark performance of a magnetic resonance imaging-based deep learning model for prostate cancer risk assessment.
    Deniffel D; Abraham N; Namdar K; Dong X; Salinas E; Milot L; Khalvati F; Haider MA
    Eur Radiol; 2020 Dec; 30(12):6867-6876. PubMed ID: 32591889
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of Thick-Slab Overlapping MIP Images of Contrast-Enhanced 3D T1-Weighted CUBE for Detection of Intracranial Metastases: A Pilot Study for Comparison of Lesion Detection, Interpretation Time, and Sensitivity with Nonoverlapping CUBE MIP, CUBE, and Inversion-Recovery-Prepared Fast-Spoiled Gradient Recalled Brain Volume.
    Yoon BC; Saad AF; Rezaii P; Wintermark M; Zaharchuk G; Iv M
    AJNR Am J Neuroradiol; 2018 Sep; 39(9):1635-1642. PubMed ID: 30093483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.