These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34993692)

  • 1. Real-time tracking of a moving target in an indoor corridor of the hospital building using RSSI signals received from two reference nodes.
    Booranawong A; Thammachote P; Sasiwat Y; Auysakul J; Sengchuai K; Buranapanichkit D; Tanthanuch S; Jindapetch N; Saito H
    Med Biol Eng Comput; 2022 Feb; 60(2):439-458. PubMed ID: 34993692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking a moving user in indoor environments using Bluetooth low energy beacons.
    Surian D; Kim V; Menon R; Dunn AG; Sintchenko V; Coiera E
    J Biomed Inform; 2019 Oct; 98():103288. PubMed ID: 31513890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RSSI Fingerprint Height Based Empirical Model Prediction for Smart Indoor Localization.
    Arigye W; Pu Q; Zhou M; Khalid W; Tahir MJ
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Enhanced Indoor Positioning Technique Based on a Novel Received Signal Strength Indicator Distance Prediction and Correction Model.
    Nagah Amr M; El Attar HM; Abd El Azeem MH; El Badawy H
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33494417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Improved Approach for RSSI-Based only Calibration-Free Real-Time Indoor Localization on IEEE 802.11 and 802.15.4 Wireless Networks.
    Passafiume M; Maddio S; Cidronali A
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28353676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indoor Positioning Algorithm Based on the Improved RSSI Distance Model.
    Li G; Geng E; Ye Z; Xu Y; Lin J; Pang Y
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks.
    Qin J; Sun S; Deng Q; Liu L; Tian Y
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28574468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Self-Localization Algorithm for Mobile Targets in Indoor Wireless Sensor Networks Using Wake-Up Media Access Control Protocol.
    Souissi R; Sahnoun S; Baazaoui MK; Fromm R; Fakhfakh A; Derbel F
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of 2.4 GHz WiFi FTM- and RSSI-Based Indoor Positioning Methods in Realistic Scenarios.
    Bullmann M; Fetzer T; Ebner F; Ebner M; Deinzer F; Grzegorzek M
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32806735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized CNNs to Indoor Localization through BLE Sensors Using Improved PSO.
    Sun D; Wei E; Ma Z; Wu C; Xu S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Considerations about the Signal Level Measurement in Wireless Sensor Networks for Node Position Estimation.
    Dolha S; Negirla P; Alexa F; Silea I
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31561569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications.
    Gharghan SK; Nordin R; Ismail M
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27509495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a real-time indoor location system using bluetooth low energy technology and deep learning to facilitate clinical applications.
    Tang G; Yan Y; Shen C; Jia X; Zinn M; Trivedi Z; Yingling A; Westover K; Jiang S
    Med Phys; 2020 Aug; 47(8):3277-3285. PubMed ID: 32323324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Adaptive Filtering Approach for Improved Indoor Localization of a Mobile Node with Zigbee-Based RSSI and Odometry.
    Loganathan A; Ahmad NS; Goh P
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Localization Method Based on RSSI for AP Clusters.
    Su Z; Tian Z; Hao J
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-to-Human Position Estimation System Using RSSI in Outdoor Environment.
    Yamamoto T; Yamaguchi T
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVM+KF Target Tracking Strategy Using the Signal Strength in Wireless Sensor Networks.
    Wang X; Liu X; Wang Z; Li R; Wu Y
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Step Length Estimation in Indoor and Outdoor Scenarios.
    Yang Z; Tran LC; Safaei F; Le AT; Taparugssanagorn A
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Combined Filtering Method for ZigBee Indoor Distance Measurement.
    Wei Z; Zhou Z
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks.
    PĂ©rez-Solano JJ; Claver JM; Ezpeleta S
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28684666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.