These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 34994168)

  • 1. Machine learning-based prediction of heat pain sensitivity by using resting-state EEG.
    Hsiao FJ; Chen WT; Pan LH; Liu HY; Wang YF; Chen SP; Lai KL; Wang SJ
    Front Biosci (Landmark Ed); 2021 Dec; 26(12):1537-1547. PubMed ID: 34994168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding Human Somatosensory Sensitivity Through Resting EEG and Behavioral Analysis: A Multimodal Fusion Approach.
    Lin HY; He C; Su CH; Hope Pan LL; Hsiao FJ; Wu YT; Wang YF; Wang SJ; Ko LW
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3310-3319. PubMed ID: 39074023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting-State EEG Signal for Major Depressive Disorder Detection: A Systematic Validation on a Large and Diverse Dataset.
    Wu CT; Huang HC; Huang S; Chen IM; Liao SC; Chen CK; Lin C; Lee SH; Chen MH; Tsai CF; Weng CH; Ko LW; Jung TP; Liu YH
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive Machine-Learning-Based Software Pipeline to Classify EEG Signals: A Case Study on PNES vs. Control Subjects.
    Varone G; Gasparini S; Ferlazzo E; Ascoli M; Tripodi GG; Zucco C; Calabrese B; Cannataro M; Aguglia U
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32102437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of machine learning in predicting clinical response to transcranial magnetic stimulation in comorbid posttraumatic stress disorder and major depression: A resting state electroencephalography study.
    Zandvakili A; Philip NS; Jones SR; Tyrka AR; Greenberg BD; Carpenter LL
    J Affect Disord; 2019 Jun; 252():47-54. PubMed ID: 30978624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral analysis and Bi-LSTM deep network-based approach in detection of mild cognitive impairment from electroencephalography signals.
    Said A; Göker H
    Cogn Neurodyn; 2024 Apr; 18(2):597-614. PubMed ID: 38699612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Classification of Subjects of the PSEN1-E280A Family at Risk of Developing Alzheimer's Disease Using Machine Learning and Resting State Electroencephalography.
    García-Pretelt FJ; Suárez-Relevo JX; Aguillon-Niño DF; Lopera-Restrepo FJ; Ochoa-Gómez JF; Tobón-Quintero CA
    J Alzheimers Dis; 2022; 87(2):817-832. PubMed ID: 35404271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls.
    Varone G; Boulila W; Lo Giudice M; Benjdira B; Mammone N; Ieracitano C; Dashtipour K; Neri S; Gasparini S; Morabito FC; Hussain A; Aguglia U
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning based depression screening framework using temporal domain features of the electroencephalography signals.
    Khan S; Umar Saeed SM; Frnda J; Arsalan A; Amin R; Gantassi R; Noorani SH
    PLoS One; 2024; 19(3):e0299127. PubMed ID: 38536782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Major Psychiatric Disorders From Resting-State Electroencephalography Using a Machine Learning Approach.
    Park SM; Jeong B; Oh DY; Choi CH; Jung HY; Lee JY; Lee D; Choi JS
    Front Psychiatry; 2021; 12():707581. PubMed ID: 34483999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drowsiness Detection Using Ocular Indices from EEG Signal.
    Tarafder S; Badruddin N; Yahya N; Nasution AH
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting-state EEG functional connectivity predicts post-traumatic stress disorder subtypes in veterans.
    Li Q; Coulson Theodorsen M; Konvalinka I; Eskelund K; Karstoft KI; Bo Andersen S; Andersen TS
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36250685
    [No Abstract]   [Full Text] [Related]  

  • 13. Machine learning approaches and non-linear processing of extracted components in frontal region to predict rTMS treatment response in major depressive disorder.
    Ebrahimzadeh E; Fayaz F; Rajabion L; Seraji M; Aflaki F; Hammoud A; Taghizadeh Z; Asgarinejad M; Soltanian-Zadeh H
    Front Syst Neurosci; 2023; 17():919977. PubMed ID: 36968455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of Consumer Preference by Analysis and Classification EEG Signals.
    Aldayel M; Ykhlef M; Al-Nafjan A
    Front Hum Neurosci; 2020; 14():604639. PubMed ID: 33519402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier.
    Al-Salman W; Li Y; Wen P
    Neurosci Res; 2021 Nov; 172():26-40. PubMed ID: 33965451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of rTMS treatment response in major depressive disorder using machine learning techniques and nonlinear features of EEG signal.
    Hasanzadeh F; Mohebbi M; Rostami R
    J Affect Disord; 2019 Sep; 256():132-142. PubMed ID: 31176185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data.
    Ding X; Yue X; Zheng R; Bi C; Li D; Yao G
    J Affect Disord; 2019 May; 251():156-161. PubMed ID: 30925266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated FBSE-EWT based learning framework for detection of epileptic seizures using time-segmented EEG signals.
    Anuragi A; Sisodia DS; Pachori RB
    Comput Biol Med; 2021 Sep; 136():104708. PubMed ID: 34358996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power spectral density-based resting-state EEG classification of first-episode psychosis.
    Redwan SM; Uddin MP; Ulhaq A; Sharif MI; Krishnamoorthy G
    Sci Rep; 2024 Jul; 14(1):15154. PubMed ID: 38956297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of indoor versus outdoor environmental state with machine learning algorithms in myopia observational studies.
    Ye B; Liu K; Cao S; Sankaridurg P; Li W; Luan M; Zhang B; Zhu J; Zou H; Xu X; He X
    J Transl Med; 2019 Sep; 17(1):314. PubMed ID: 31533735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.