These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34994330)

  • 1. In Vitro and In Vivo Approaches for Screening the Potential of Anticancer Agents: A Review.
    Mishra R; Mishra PS; Varshney S; Mazumder R; Mazumder A
    Curr Drug Discov Technol; 2022; 19(3):e060122200071. PubMed ID: 34994330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assays and techniques utilized in anticancer drug discovery.
    Ediriweera MK; Tennekoon KH; Samarakoon SR
    J Appl Toxicol; 2019 Jan; 39(1):38-71. PubMed ID: 30073673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preclinical screening methods in cancer.
    Kumar S; Bajaj S; Bodla RB
    Indian J Pharmacol; 2016; 48(5):481-486. PubMed ID: 27721530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches.
    Suggitt M; Bibby MC
    Clin Cancer Res; 2005 Feb; 11(3):971-81. PubMed ID: 15709162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lessons Learned from Two Decades of Anticancer Drugs.
    Liu Z; Delavan B; Roberts R; Tong W
    Trends Pharmacol Sci; 2017 Oct; 38(10):852-872. PubMed ID: 28709554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Medicinal Chemist's Perspective Towards Structure Activity Relationship of Heterocycle Based Anticancer Agents.
    Nehra B; Mathew B; Chawla PA
    Curr Top Med Chem; 2022; 22(6):493-528. PubMed ID: 35021975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticancer potential of Hericium erinaceus extracts against human gastrointestinal cancers.
    Li G; Yu K; Li F; Xu K; Li J; He S; Cao S; Tan G
    J Ethnopharmacol; 2014 Apr; 153(2):521-30. PubMed ID: 24631140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategy for the development of novel anticancer drugs.
    Saijo N; Tamura T; Nishio K
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S97-101. PubMed ID: 12856152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New applications of old metal-binding drugs in the treatment of human cancer.
    Schmitt SM; Frezza M; Dou QP
    Front Biosci (Schol Ed); 2012 Jan; 4(1):375-91. PubMed ID: 22202066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives.
    Dey P; Kundu A; Chakraborty HJ; Kar B; Choi WS; Lee BM; Bhakta T; Atanasov AG; Kim HS
    Int J Cancer; 2019 Oct; 145(7):1731-1744. PubMed ID: 30387881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Series of Triazolothiadiazines as Potential Anticancer Agents for Targeted Therapy of Non-Small Cell Lung and Colorectal Cancers: Design, Synthesis, In silico and In vitro Studies Providing Mechanistic Insight into Their Anticancer Potencies.
    Sever B; Altıntop MD; Çiftçi GA; Özdemir A
    Med Chem; 2021; 17(10):1104-1128. PubMed ID: 33087032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-shock protein 90 (Hsp90) as anticancer target for drug discovery: an ample computational perspective.
    Kumalo HM; Bhakat S; Soliman ME
    Chem Biol Drug Des; 2015 Nov; 86(5):1131-60. PubMed ID: 25958815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A better platinum-based anticancer drug yet to come?
    Olszewski U; Hamilton G
    Anticancer Agents Med Chem; 2010 May; 10(4):293-301. PubMed ID: 20187870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development.
    Hameed R; Khan A; Khan S; Perveen S
    Anticancer Agents Med Chem; 2019; 19(5):592-598. PubMed ID: 30306880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel class of achiral seco-analogs of CC-1065 and the duocarmycins: design, synthesis, DNA binding, and anticancer properties.
    Kupchinsky S; Centioni S; Howard T; Trzupek J; Roller S; Carnahan V; Townes H; Purnell B; Price C; Handl H; Summerville K; Johnson K; Toth J; Hudson S; Kiakos K; Hartley JA; Lee M
    Bioorg Med Chem; 2004 Dec; 12(23):6221-36. PubMed ID: 15519165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [History and new development of screening and evaluation methods of anticancer drugs used in vivo and in vitro].
    Bissery MC; Chabot GG
    Bull Cancer; 1991; 78(7):587-602. PubMed ID: 1912670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones.
    Workman P
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S45-56. PubMed ID: 12819933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies.
    Godugu C; Patel AR; Desai U; Andey T; Sams A; Singh M
    PLoS One; 2013; 8(1):e53708. PubMed ID: 23349734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy.
    Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva E; Montemore MM; González-Díaz H
    Mol Pharm; 2020 Jul; 17(7):2612-2627. PubMed ID: 32459098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in translational pharmacological investigations in identifying and validating molecular targets of natural product anticancer agents.
    Yu J; Nag SA; Zhang R
    Curr Cancer Drug Targets; 2013 Jun; 13(5):596-609. PubMed ID: 23597194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.