These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34994360)

  • 41. Synthesis of hafnium oxide-gold core-shell nanoparticles.
    Dahal N; Chikan V
    Inorg Chem; 2012 Jan; 51(1):518-22. PubMed ID: 22221284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zn
    Bram S; Gordon MN; Carbonell MA; Pink M; Stein BD; Morgan DG; Aguilà D; Aromí G; Skrabalak SE; Losovyj Y; Bronstein LM
    ACS Omega; 2018 Nov; 3(11):16328-16337. PubMed ID: 31458268
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of alpha-Fe nanoparticles by solventless thermal decomposition.
    Cha HG; Kim YH; Kim CW; Lee DK; Moon SD; Kwon HW; Kang YS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3412-6. PubMed ID: 17252778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.
    Castellanos-Rubio I; Rodrigo I; Munshi R; Arriortua O; Garitaonandia JS; Martinez-Amesti A; Plazaola F; Orue I; Pralle A; Insausti M
    Nanoscale; 2019 Sep; 11(35):16635-16649. PubMed ID: 31460555
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets.
    Muzzi B; Albino M; Petrecca M; Innocenti C; Fernández CJ; Bertoni G; Marquina C; Ibarra MR; Sangregorio C
    Small; 2022 Apr; 18(16):e2107426. PubMed ID: 35274450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Annealing effects on 5 nm iron oxide nanoparticles.
    Vargas JM; Lima E; Socolovsky LM; Knobel M; Zanchet D; Zysler RD
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3313-7. PubMed ID: 18019166
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles.
    LaGrow AP; Famiani S; Sergides A; Lari L; Lloyd DC; Takahashi M; Maenosono S; Boyes ED; Gai PL; Thanh NTK
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208096
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles.
    Krajewski M; Brzozka K; Lin WS; Lin HM; Tokarczyk M; Borysiuk J; Kowalski G; Wasik D
    Phys Chem Chem Phys; 2016 Feb; 18(5):3900-9. PubMed ID: 26766540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Leishmanicidal Activity of Biogenic Fe₃O₄ Nanoparticles.
    Khatami M; Alijani H; Sharifi I; Sharifi F; Pourseyedi S; Kharazi S; Lima Nobre MA; Khatami M
    Sci Pharm; 2017 Nov; 85(4):. PubMed ID: 29156612
    [No Abstract]   [Full Text] [Related]  

  • 50. Gold/Wüstite core-shell nanoparticles: suppression of iron oxidation through the electron-transfer phenomenon.
    Singh P; Mott DM; Maenosono S
    Chemphyschem; 2013 Oct; 14(14):3278-83. PubMed ID: 23913505
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Size dependent structural and magnetic properties of FeO-Fe3O4 nanoparticles.
    Lak A; Kraken M; Ludwig F; Kornowski A; Eberbeck D; Sievers S; Litterst FJ; Weller H; Schilling M
    Nanoscale; 2013 Dec; 5(24):12286-95. PubMed ID: 24154669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents.
    Gervits NE; Gippius AA; Tkachev AV; Demikhov EI; Starchikov SS; Lyubutin IS; Vasiliev AL; Chekhonin VP; Abakumov MA; Semkina AS; Mazhuga AG
    Beilstein J Nanotechnol; 2019; 10():1964-1972. PubMed ID: 31667044
    [No Abstract]   [Full Text] [Related]  

  • 53. Green biosynthesis and characterization of magnetic iron oxide (Fe₃O₄) nanoparticles using seaweed (Sargassum muticum) aqueous extract.
    Mahdavi M; Namvar F; Ahmad MB; Mohamad R
    Molecules; 2013 May; 18(5):5954-64. PubMed ID: 23698048
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of silver-iron oxide nanocomposites by thermal decomposition.
    Kishore PN; Jeevanandam P
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3445-53. PubMed ID: 21776722
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Local and long-range atomic/magnetic structure of non-stoichiometric spinel iron oxide nanocrystallites.
    Andersen HL; Frandsen BA; Gunnlaugsson HP; Jørgensen MRV; Billinge SJL; Jensen KMØ; Christensen M
    IUCrJ; 2021 Jan; 8(Pt 1):33-45. PubMed ID: 33520241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nickel platinum (Ni
    Moreira Da Silva C; Girard A; Dufond M; Fossard F; Andrieux-Ledier A; Huc V; Loiseau A
    Nanoscale Adv; 2020 Sep; 2(9):3882-3889. PubMed ID: 36132757
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TEM-induced structural evolution in amorphous Fe oxide nanoparticles.
    Latham AH; Wilson MJ; Schiffer P; Williams ME
    J Am Chem Soc; 2006 Oct; 128(39):12632-3. PubMed ID: 17002341
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.
    Chen CJ; Chiang RK; Kamali S; Wang SL
    Nanoscale; 2015 Sep; 7(34):14332-43. PubMed ID: 26243163
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stability of core-shell magnetite nanoparticles.
    Kalska-Szostko B; Wykowska U; Satuła D; Zambrzycka E
    Colloids Surf B Biointerfaces; 2014 Jan; 113():295-301. PubMed ID: 24113333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation of Fe₃O₄ magnetic nanoparticles coated with gallic acid for drug delivery.
    Dorniani D; Hussein MZ; Kura AU; Fakurazi S; Shaari AH; Ahmad Z
    Int J Nanomedicine; 2012; 7():5745-56. PubMed ID: 23166439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.