These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34994360)

  • 61. Biocompatibility of magnetic Fe₃O₄ nanoparticles and their cytotoxic effect on MCF-7 cells.
    Chen D; Tang Q; Li X; Zhou X; Zang J; Xue WQ; Xiang JY; Guo CQ
    Int J Nanomedicine; 2012; 7():4973-82. PubMed ID: 23028225
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Controlled synthesis of different types iron oxides nanocrystals in paraffin oil.
    Si H; Zhou C; Wang H; Lou S; Li S; Du Z; Li LS
    J Colloid Interface Sci; 2008 Nov; 327(2):466-71. PubMed ID: 18790496
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling.
    Harris RA; Shumbula PM; van der Walt H
    Langmuir; 2015 Apr; 31(13):3934-43. PubMed ID: 25768034
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hydrophobically Coated Superparamagnetic Iron Oxides Nanoparticles Incorporated into Polymer-Based Nanocapsules Dispersed in Water.
    Gumieniczek-Chłopek E; Odrobińska J; Strączek T; Radziszewska A; Zapotoczny S; Kapusta C
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182749
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Iron oxide shell as the oxidation-resistant layer in SmCo5 @ Fe2O3 core-shell magnetic nanoparticles.
    Teng X; Yang H
    J Nanosci Nanotechnol; 2007 Jan; 7(1):356-61. PubMed ID: 17455504
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Release of a liver anticancer drug, sorafenib from its PVA/LDH- and PEG/LDH-coated iron oxide nanoparticles for drug delivery applications.
    Ebadi M; Bullo S; Buskara K; Hussein MZ; Fakurazi S; Pastorin G
    Sci Rep; 2020 Dec; 10(1):21521. PubMed ID: 33298980
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.
    Balasubramanian B; Kraemer KL; Reding NA; Skomski R; Ducharme S; Sellmyer DJ
    ACS Nano; 2010 Apr; 4(4):1893-900. PubMed ID: 20359188
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application.
    Karamipour Sh; Sadjadi MS; Farhadyar N
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():146-55. PubMed ID: 25879984
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthesis and characterization of core-shell Fe₃O₄-gold-chitosan nanostructure.
    Salehizadeh H; Hekmatian E; Sadeghi M; Kennedy K
    J Nanobiotechnology; 2012 Jan; 10():3. PubMed ID: 22221555
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Core-Double-Shell Fe
    Jalili M; Ghanbari H; Malekfar R; Mousavi Masouleh SS
    ACS Omega; 2020 Feb; 5(7):3563-3570. PubMed ID: 32118171
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-temperature stable, iron-based core-shell catalysts for ammonia decomposition.
    Feyen M; Weidenthaler C; Güttel R; Schlichte K; Holle U; Lu AH; Schüth F
    Chemistry; 2011 Jan; 17(2):598-605. PubMed ID: 21207578
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fe₃O₄ Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy.
    Dukenbayev K; Korolkov IV; Tishkevich DI; Kozlovskiy AL; Trukhanov SV; Gorin YG; Shumskaya EE; Kaniukov EY; Vinnik DA; Zdorovets MV; Anisovich M; Trukhanov AV; Tosi D; Molardi C
    Nanomaterials (Basel); 2019 Mar; 9(4):. PubMed ID: 30935156
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.
    Lee C; Kim NR; Koo J; Lee YJ; Lee HM
    Nanotechnology; 2015 Nov; 26(45):455601. PubMed ID: 26489391
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy.
    Knappett BR; Abdulkin P; Ringe E; Jefferson DA; Lozano-Perez S; Rojas TC; Fernández A; Wheatley AE
    Nanoscale; 2013 Jul; 5(13):5765-72. PubMed ID: 23463298
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multiple morphologies of gold-magnetite heterostructure nanoparticles are effectively functionalized with protein for cell targeting.
    Krystofiak ES; Mattson EC; Voyles PM; Hirschmugl CJ; Albrecht RM; Gajdardziska-Josifovska M; Oliver JA
    Microsc Microanal; 2013 Aug; 19(4):821-34. PubMed ID: 23745591
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation.
    Xing L; Ten Brink GH; Chen B; Schmidt FP; Haberfehlner G; Hofer F; Kooi BJ; Palasantzas G
    Nanotechnology; 2016 May; 27(21):215703. PubMed ID: 27089553
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.
    Pigozzi G; Mukherji D; Gilles R; Barbier B; Kostorz G
    Nanotechnology; 2006 Aug; 17(16):4195-203. PubMed ID: 21727559
    [TBL] [Abstract][Full Text] [Related]  

  • 78. On the stability of AuFe alloy nanoparticles.
    Velasco V; Pohl D; Surrey A; Bonatto-Minella A; Hernando A; Crespo P; Rellinghaus B
    Nanotechnology; 2014 May; 25(21):215703. PubMed ID: 24784895
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Polymer-hematite nanocomposites: templating effect of commercial ion-exchangers in the growth of size-controlled iron oxide nanoparticles.
    Centomo P; Canton P; Canova D; Zecca M
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6872-9. PubMed ID: 24245157
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles.
    Sun S; Zeng H; Robinson DB; Raoux S; Rice PM; Wang SX; Li G
    J Am Chem Soc; 2004 Jan; 126(1):273-9. PubMed ID: 14709092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.