These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34994368)

  • 1. The advent and development of organophotoredox catalysis.
    Bortolato T; Cuadros S; Simionato G; Dell'Amico L
    Chem Commun (Camb); 2022 Jan; 58(9):1263-1283. PubMed ID: 34994368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly Reducing, Visible-Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals.
    Du Y; Pearson RM; Lim CH; Sartor SM; Ryan MD; Yang H; Damrauer NH; Miyake GM
    Chemistry; 2017 Aug; 23(46):10962-10968. PubMed ID: 28654171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Rational Approach to Organo-Photocatalysis: Novel Designs and Structure-Property Relationships.
    Vega-Peñaloza A; Mateos J; Companyó X; Escudero-Casao M; Dell'Amico L
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1082-1097. PubMed ID: 32568437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous Organocatalysts for Light-Driven Reactions in Continuous Flow.
    Di Carmine G; D'Agostino C; Bortolini O; Poletti L; De Risi C; Ragno D; Massi A
    Molecules; 2024 May; 29(10):. PubMed ID: 38792028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science.
    Marchi M; Gentile G; Rosso C; Melchionna M; Fornasiero P; Filippini G; Prato M
    ChemSusChem; 2022 Sep; 15(18):e202201094. PubMed ID: 35789214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Rational Design of Reducing Organophotoredox Catalysts Unlocks Proton-Coupled Electron-Transfer and Atom Transfer Radical Polymerization Mechanisms.
    Bortolato T; Simionato G; Vayer M; Rosso C; Paoloni L; Benetti EM; Sartorel A; Lebœuf D; Dell'Amico L
    J Am Chem Soc; 2023 Jan; 145(3):1835-1846. PubMed ID: 36608266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and application of aminoacridinium organophotoredox catalysts.
    Zilate B; Fischer C; Sparr C
    Chem Commun (Camb); 2020 Feb; 56(12):1767-1775. PubMed ID: 31998897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements.
    Larsen CB; Wenger OS
    Chemistry; 2018 Feb; 24(9):2039-2058. PubMed ID: 28892199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective "organocatalysis in disguise" by the ligand sphere of chiral metal-templated complexes.
    Larionov VA; Feringa BL; Belokon YN
    Chem Soc Rev; 2021 Sep; 50(17):9715-9740. PubMed ID: 34259242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naphthochromenones: Organic Bimodal Photocatalysts Engaging in Both Oxidative and Reductive Quenching Processes.
    Mateos J; Rigodanza F; Vega-Peñaloza A; Sartorel A; Natali M; Bortolato T; Pelosi G; Companyó X; Bonchio M; Dell'Amico L
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1302-1312. PubMed ID: 31660691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenothiazines, Dihydrophenazines, and Phenoxazines: Sustainable Alternatives to Precious-Metal-Based Photoredox Catalysts.
    Corbin DA; Lim CH; Miyake GM
    Aldrichimica Acta; 2019; 52(1):7-21. PubMed ID: 31839678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing.
    Millet A; Cesana PT; Sedillo K; Bird MJ; Schlau-Cohen GS; Doyle AG; MacMillan DWC; Scholes GD
    Acc Chem Res; 2022 May; 55(10):1423-1434. PubMed ID: 35471814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition Metal Phosphide Nanoarchitectonics for Versatile Organic Catalysis.
    Sharma D; Choudhary P; Kumar S; Krishnan V
    Small; 2023 Mar; 19(11):e2207053. PubMed ID: 36650943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond.
    Chen DF; Han ZY; Zhou XL; Gong LZ
    Acc Chem Res; 2014 Aug; 47(8):2365-77. PubMed ID: 24911184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoactive Nickel Complexes in Cross-Coupling Catalysis.
    Wenger OS
    Chemistry; 2021 Feb; 27(7):2270-2278. PubMed ID: 33111994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications.
    Singh PP; Singh J; Srivastava V
    RSC Adv; 2023 Apr; 13(16):10958-10986. PubMed ID: 37033422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoredox Catalysis for the Generation of Carbon Centered Radicals.
    Goddard JP; Ollivier C; Fensterbank L
    Acc Chem Res; 2016 Sep; 49(9):1924-36. PubMed ID: 27529633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoredox Catalysis Using Heterogenized Iridium Complexes*.
    Materna KL; Hammarström L
    Chemistry; 2021 Dec; 27(68):16966-16977. PubMed ID: 34137473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.