These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34994533)

  • 1. Electrochemical Dual Transducer for Fluidic Self-Sensing Actuation.
    Kuwajima Y; Seki Y; Yamada Y; Awaki S; Kamiyauchi S; Wiranata A; Okuno Y; Shigemune H; Maeda S
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3496-3503. PubMed ID: 34994533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-protection soft fluidic robots with rapid large-area self-healing capabilities.
    Tang W; Zhong Y; Xu H; Qin K; Guo X; Hu Y; Zhu P; Qu Y; Yan D; Li Z; Jiao Z; Fan X; Yang H; Zou J
    Nat Commun; 2023 Oct; 14(1):6430. PubMed ID: 37833280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable pumps for soft machines.
    Cacucciolo V; Shintake J; Kuwajima Y; Maeda S; Floreano D; Shea H
    Nature; 2019 Aug; 572(7770):516-519. PubMed ID: 31413364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review on Electrohydrodynamic (EHD) Pump.
    Peng Y; Li D; Yang X; Ma Z; Mao Z
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically-Driven Soft Fluidic Actuators Combining Stretchable Pumps With Thin McKibben Muscles.
    Cacucciolo V; Nabae H; Suzumori K; Shea H
    Front Robot AI; 2019; 6():146. PubMed ID: 33501161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actuation-enhanced multifunctional sensing and information recognition by magnetic artificial cilia arrays.
    Han J; Dong X; Yin Z; Zhang S; Li M; Zheng Z; Ugurlu MC; Jiang W; Liu H; Sitti M
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2308301120. PubMed ID: 37792517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing Viscous Flow to Simplify the Actuation of Fluidic Soft Robots.
    Vasios N; Gross AJ; Soifer S; Overvelde JTB; Bertoldi K
    Soft Robot; 2020 Feb; 7(1):1-9. PubMed ID: 31070518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compact DEA-based soft peristaltic pump for power and control of fluidic robots.
    Xu S; Nunez CM; Souri M; Wood RJ
    Sci Robot; 2023 Jun; 8(79):eadd4649. PubMed ID: 37343077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicone-based highly stretchable multifunctional fiber pumps.
    Kanno R; Shimizu K; Murakami K; Shibahara Y; Ogawa N; Akai H; Shintake J
    Sci Rep; 2024 Feb; 14(1):4618. PubMed ID: 38409217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Electrohydrodynamic Fluid-Driven Valveless Water Pump via Immiscible Interface.
    Mao Z; Hosoya N; Maeda S
    Cyborg Bionic Syst; 2024; 5():0091. PubMed ID: 38318499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A retrofit sensing strategy for soft fluidic robots.
    Zou S; Picella S; de Vries J; Kortman VG; Sakes A; Overvelde JTB
    Nat Commun; 2024 Jan; 15(1):539. PubMed ID: 38225274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-Powered Master Controllers for Reconfigurable Fluidic Soft Robots.
    Zhang Y; Wang T; He W; Zhu S
    Soft Robot; 2023 Dec; 10(6):1126-1136. PubMed ID: 37196160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underwater Crawling Robot With Hydraulic Soft Actuators.
    Tan Q; Chen Y; Liu J; Zou K; Yi J; Liu S; Wang Z
    Front Robot AI; 2021; 8():688697. PubMed ID: 34513936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyvinyl chloride-added dibutyl adipate for high-performance electrohydrodynamic pumps.
    Shimizu K; Murakami K; Ogawa N; Akai H; Shintake J
    Front Robot AI; 2023; 10():1109563. PubMed ID: 37064572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics.
    Venzac B; Liu Y; Ferrante I; Vargas P; Yamada A; Courson R; Verhulsel M; Malaquin L; Viovy JL; Descroix S
    Microsyst Nanoeng; 2020; 6():18. PubMed ID: 34567633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Sensing Pneumatic Compressing Actuator.
    Lin N; Zheng H; Li Y; Wang R; Chen X; Zhang X
    Front Neurorobot; 2020; 14():572856. PubMed ID: 33362501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recyclable and Self-Repairable Fluid-Driven Liquid Crystal Elastomer Actuator.
    He Q; Wang Z; Wang Y; Song Z; Cai S
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35464-35474. PubMed ID: 32658448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remotely Light-Powered Soft Fluidic Actuators Based on Plasmonic-Driven Phase Transitions in Elastic Constraint.
    Meder F; Naselli GA; Sadeghi A; Mazzolai B
    Adv Mater; 2019 Dec; 31(51):e1905671. PubMed ID: 31682053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.
    Marchese AD; Onal CD; Rus D
    Soft Robot; 2014 Mar; 1(1):75-87. PubMed ID: 27625912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.