These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34994844)

  • 41. Timing of phenological stages for apple and pear trees under climate change in a temperate-continental climate.
    Chitu E; Paltineanu C
    Int J Biometeorol; 2020 Aug; 64(8):1263-1271. PubMed ID: 32240359
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.
    Wolkovich EM; Davies TJ; Schaefer H; Cleland EE; Cook BI; Travers SE; Willis CG; Davis CC
    Am J Bot; 2013 Jul; 100(7):1407-21. PubMed ID: 23797366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Implications of variable environments on phenology of apple (Malus × domestica Borkh.) in Northwestern Himalayan region.
    Ali MT; Mir MS; Mehraj S; Shah IA
    Int J Biometeorol; 2022 May; 66(5):945-956. PubMed ID: 35132442
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phenological patterns of flowering across biogeographical regions of Europe.
    Templ B; Templ M; Filzmoser P; Lehoczky A; Bakšienè E; Fleck S; Gregow H; Hodzic S; Kalvane G; Kubin E; Palm V; Romanovskaja D; Vucˇetic V; Žust A; Czúcz B;
    Int J Biometeorol; 2017 Jul; 61(7):1347-1358. PubMed ID: 28220255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China.
    Du Y; Chen J; Willis CG; Zhou Z; Liu T; Dai W; Zhao Y; Ma K
    Ecol Evol; 2017 Sep; 7(17):6747-6757. PubMed ID: 28904756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimating phenology and phenological shifts with hierarchical modeling.
    Wilson SM; Anderson JH; Ward EJ
    Ecology; 2023 Jul; 104(7):e4061. PubMed ID: 37395297
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Warming acts through earlier snowmelt to advance but not extend alpine community flowering.
    Jabis MD; Winkler DE; Kueppers LM
    Ecology; 2020 Sep; 101(9):e03108. PubMed ID: 32455489
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey.
    Bock A; Sparks TH; Estrella N; Jee N; Casebow A; Schunk C; Leuchner M; Menzel A
    Glob Chang Biol; 2014 Nov; 20(11):3508-19. PubMed ID: 24639048
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.
    Davis CC; Willis CG; Connolly B; Kelly C; Ellison AM
    Am J Bot; 2015 Oct; 102(10):1599-609. PubMed ID: 26451038
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia.
    Crepinšek Z; Stampar F; Kajfež-Bogataj L; Solar A
    Int J Biometeorol; 2012 Jul; 56(4):681-94. PubMed ID: 21786017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flowering season of vernal herbs is shortened at elevated temperatures with reduced precipitation in early spring.
    Nam BE; Kim JG
    Sci Rep; 2020 Oct; 10(1):17494. PubMed ID: 33060698
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Forest wildflowers bloom earlier as Europe warms: lessons from herbaria and spatial modelling.
    Willems FM; Scheepens JF; Bossdorf O
    New Phytol; 2022 Jul; 235(1):52-65. PubMed ID: 35478407
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?
    Richardson BA; Chaney L; Shaw NL; Still SM
    Glob Chang Biol; 2017 Jun; 23(6):2499-2508. PubMed ID: 27739159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flowering phenology shifts in response to biodiversity loss.
    Wolf AA; Zavaleta ES; Selmants PC
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3463-3468. PubMed ID: 28289231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contrasting wheat phenological responses to climate change in global scale.
    Ren S; Qin Q; Ren H
    Sci Total Environ; 2019 May; 665():620-631. PubMed ID: 30776634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phenological changes in olive (Ola europaea L.) reproductive cycle in southern Spain due to climate change.
    Garcia-Mozo H; Oteros J; Galan C
    Ann Agric Environ Med; 2015; 22(3):421-8. PubMed ID: 26403107
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Climate change and the optimal flowering time of annual plants in seasonal environments.
    Johansson J; Bolmgren K; Jonzén N
    Glob Chang Biol; 2013 Jan; 19(1):197-207. PubMed ID: 23504731
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Long-term trends mask variation in the direction and magnitude of short-term phenological shifts.
    Iler AM; Høye TT; Inouye DW; Schmidt NM
    Am J Bot; 2013 Jul; 100(7):1398-406. PubMed ID: 23660568
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advancing frost dates have reduced frost risk among most North American angiosperms since 1980.
    Park IW; Ramirez-Parada T; Mazer SJ
    Glob Chang Biol; 2021 Jan; 27(1):165-176. PubMed ID: 33030240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.