These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34994844)

  • 61. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change.
    Buckley LB; Graham SI; Nufio CR
    J Anim Ecol; 2021 May; 90(5):1252-1263. PubMed ID: 33630307
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Disorder or a new order: How climate change affects phenological variability.
    Stemkovski M; Bell JR; Ellwood ER; Inouye BD; Kobori H; Lee SD; Lloyd-Evans T; Primack RB; Templ B; Pearse WD
    Ecology; 2023 Jan; 104(1):e3846. PubMed ID: 36199230
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.
    Carbognani M; Bernareggi G; Perucco F; Tomaselli M; Petraglia A
    Oecologia; 2016 Oct; 182(2):573-85. PubMed ID: 27299914
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity.
    Iler AM; Inouye DW; Schmidt NM; Høye TT
    Ecology; 2017 Mar; 98(3):647-655. PubMed ID: 27984645
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Drivers of phenological changes in southern Europe.
    Vogel J
    Int J Biometeorol; 2022 Aug; 66(9):1903-1914. PubMed ID: 35882643
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Testing a growth efficiency hypothesis with continental-scale phenological variations of common and cloned plants.
    Liang L; Schwartz MD
    Int J Biometeorol; 2014 Oct; 58(8):1789-97. PubMed ID: 23775129
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region.
    Aguilera F; Fornaciari M; Ruiz-Valenzuela L; Galán C; Msallem M; Dhiab AB; la Guardia CD; Del Mar Trigo M; Bonofiglio T; Orlandi F
    Int J Biometeorol; 2015 May; 59(5):629-41. PubMed ID: 25060840
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps.
    Vitasse Y; Ursenbacher S; Klein G; Bohnenstengel T; Chittaro Y; Delestrade A; Monnerat C; Rebetez M; Rixen C; Strebel N; Schmidt BR; Wipf S; Wohlgemuth T; Yoccoz NG; Lenoir J
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):1816-1835. PubMed ID: 33908168
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phenological changes in the southern hemisphere.
    Chambers LE; Altwegg R; Barbraud C; Barnard P; Beaumont LJ; Crawford RJ; Durant JM; Hughes L; Keatley MR; Low M; Morellato PC; Poloczanska ES; Ruoppolo V; Vanstreels RE; Woehler EJ; Wolfaardt AC
    PLoS One; 2013; 8(10):e75514. PubMed ID: 24098389
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spring understory herbs flower later in intensively managed forests.
    Willems FM; Scheepens JF; Ammer C; Block S; Bucharova A; Schall P; Sehrt M; Bossdorf O
    Ecol Appl; 2021 Jul; 31(5):e02332. PubMed ID: 33765327
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Earlier spring reduces potential for gene flow via reduced flowering synchrony across an elevational gradient.
    Rivest S; Lajoie G; Watts DA; Vellend M
    Am J Bot; 2021 Mar; 108(3):538-545. PubMed ID: 33733494
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Increasing frost risk associated with advanced citrus flowering dates in Kerman and Shiraz, Iran: 1960-2010.
    Fitchett JM; Grab SW; Thompson DI; Roshan G
    Int J Biometeorol; 2014 Oct; 58(8):1811-5. PubMed ID: 24429704
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Phenological sequences: how early-season events define those that follow.
    Ettinger AK; Gee S; Wolkovich EM
    Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An examination of climate-driven flowering-time shifts at large spatial scales over 153 years in a common weedy annual.
    Berg CS; Brown JL; Weber JJ
    Am J Bot; 2019 Nov; 106(11):1435-1443. PubMed ID: 31675107
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change.
    Huang J; Hao H
    Int J Biometeorol; 2018 Aug; 62(8):1507-1520. PubMed ID: 29752540
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of plant size and weather on the flowering phenology of the organ pipe cactus (Stenocereus thurberi).
    Bustamante E; Búrquez A
    Ann Bot; 2008 Dec; 102(6):1019-30. PubMed ID: 18854374
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Spatiotemporal Variation of
    Wang X; Liu Y; Li X; He S; Zhong M; Shang F
    Front Plant Sci; 2021; 12():716071. PubMed ID: 35126403
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Citizen science and expert opinion working together to understand the impacts of climate change.
    Garcia-Rojas MI; Keatley MR; Roslan N
    PLoS One; 2022; 17(8):e0273822. PubMed ID: 36040922
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Flowering Phenology Adjustment and Flower Longevity in a South American Alpine Species.
    Arroyo MTK; Tamburrino Í; Pliscoff P; Robles V; Colldecarrera M; Guerrero PC
    Plants (Basel); 2021 Feb; 10(3):. PubMed ID: 33671053
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum.
    Tansey CJ; Hadfield JD; Phillimore AB
    Glob Chang Biol; 2017 Aug; 23(8):3321-3334. PubMed ID: 28185374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.