These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34994962)

  • 1. Reduction of Off-Target Effects of Gapmer Antisense Oligonucleotides by Oligonucleotide Extension.
    Yasuhara H; Yoshida T; Sasaki K; Obika S; Inoue T
    Mol Diagn Ther; 2022 Jan; 26(1):117-127. PubMed ID: 34994962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells.
    Yoshida T; Naito Y; Yasuhara H; Sasaki K; Kawaji H; Kawai J; Naito M; Okuda H; Obika S; Inoue T
    Genes Cells; 2019 Dec; 24(12):827-835. PubMed ID: 31637814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences.
    Yoshida T; Naito Y; Sasaki K; Uchida E; Sato Y; Naito M; Kawanishi T; Obika S; Inoue T
    Genes Cells; 2018 Jun; 23(6):448-455. PubMed ID: 29667281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using RNA-seq to Assess Off-Target Effects of Antisense Oligonucleotides in Human Cell Lines.
    Michel S; Schirduan K; Shen Y; Klar R; Tost J; Jaschinski F
    Mol Diagn Ther; 2021 Jan; 25(1):77-85. PubMed ID: 33314011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides.
    Hori SI; Mitsuoka Y; Kugimiya A
    Nucleic Acid Ther; 2019 Feb; 29(1):44-50. PubMed ID: 30508397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of gapmer antisense oligonucleotide with deoxyribonucleic guanidine (DNG) modifications.
    Kojima N; Shrestha AR; Akisawa T; Piao H; Kizawa H; Ohmiya Y; Kurita R
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(1-3):258-269. PubMed ID: 31556356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of combinations of gapmer antisense oligonucleotides on the target reduction.
    Yanagidaira M; Yoshioka K; Nagata T; Nakao S; Miyata K; Yokota T
    Mol Biol Rep; 2023 Apr; 50(4):3539-3546. PubMed ID: 36787053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides.
    Scharner J; Ma WK; Zhang Q; Lin KT; Rigo F; Bennett CF; Krainer AR
    Nucleic Acids Res; 2020 Jan; 48(2):802-816. PubMed ID: 31802121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiviral Efficacy of RNase H-Dependent Gapmer Antisense Oligonucleotides against Japanese Encephalitis Virus.
    Okamoto S; Echigoya Y; Tago A; Segawa T; Sato Y; Itou T
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms.
    Pollak AJ; Hickman JH; Liang XH; Crooke ST
    Nucleic Acid Ther; 2020 Oct; 30(5):312-324. PubMed ID: 32589504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins.
    Shen W; De Hoyos CL; Sun H; Vickers TA; Liang XH; Crooke ST
    Nucleic Acids Res; 2018 Mar; 46(5):2204-2217. PubMed ID: 29390093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation.
    Hvam ML; Cai Y; Dagnæs-Hansen F; Nielsen JS; Wengel J; Kjems J; Howard KA
    Mol Ther; 2017 Jul; 25(7):1710-1717. PubMed ID: 28641935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic and static control of the off-target interactions of antisense oligonucleotides using toehold chemistry.
    Terada C; Oh K; Tsubaki R; Chan B; Aibara N; Ohyama K; Shibata MA; Wada T; Harada-Shiba M; Yamayoshi A; Yamamoto T
    Nat Commun; 2023 Dec; 14(1):7972. PubMed ID: 38042877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense oligonucleotide treatment produces a type I interferon response that protects against diet-induced obesity.
    McCabe KM; Hsieh J; Thomas DG; Molusky MM; Tascau L; Feranil JB; Qiang L; Ferrante AW; Tall AR
    Mol Metab; 2020 Apr; 34():146-156. PubMed ID: 32180554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.
    Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP
    Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile.
    Hegarty JP; Krzeminski J; Sharma AK; Guzman-Villanueva D; Weissig V; Stewart DB
    Int J Nanomedicine; 2016; 11():3607-19. PubMed ID: 27536102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the effect of 2'-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice.
    Prakash TP; Yu J; Kinberger GA; Low A; Jackson M; Rigo F; Swayze EE; Seth PP
    Bioorg Med Chem Lett; 2018 Dec; 28(23-24):3774-3779. PubMed ID: 30342955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides.
    Østergaard ME; De Hoyos CL; Wan WB; Shen W; Low A; Berdeja A; Vasquez G; Murray S; Migawa MT; Liang XH; Swayze EE; Crooke ST; Seth PP
    Nucleic Acids Res; 2020 Feb; 48(4):1691-1700. PubMed ID: 31980820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of nucleobase chemical modifications that reduce the hepatotoxicity of gapmer antisense oligonucleotides.
    Yoshida T; Morihiro K; Naito Y; Mikami A; Kasahara Y; Inoue T; Obika S
    Nucleic Acids Res; 2022 Jul; 50(13):7224-7234. PubMed ID: 35801870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Likelihood of Nonspecific Activity of Gapmer Antisense Oligonucleotides Is Associated with Relative Hybridization Free Energy.
    Watt AT; Swayze G; Swayze EE; Freier SM
    Nucleic Acid Ther; 2020 Aug; 30(4):215-228. PubMed ID: 32125928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.