These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34995152)

  • 21. Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil.
    Han H; Cai H; Wang X; Hu X; Chen Z; Yao L
    Ecotoxicol Environ Saf; 2020 Jun; 195():110375. PubMed ID: 32200142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species.
    Manzoor M; Gul I; Ahmed I; Zeeshan M; Hashmi I; Amin BAZ; Kallerhoff J; Arshad M
    Chemosphere; 2019 Jul; 227():561-569. PubMed ID: 31005670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fungi-assisted phytoextraction of lead: tolerance, plant growth-promoting activities and phytoavailability.
    Manzoor M; Gul I; Kallerhoff J; Arshad M
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23788-23797. PubMed ID: 31209746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation.
    Pogrzeba M; Rusinowski S; Sitko K; Krzyżak J; Skalska A; Małkowski E; Ciszek D; Werle S; McCalmont JP; Mos M; Kalaji HM
    Environ Pollut; 2017 Jun; 225():163-174. PubMed ID: 28365513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved of growth and phytostabilization potential of lead (Pb) in
    Tammam A; El-Aggan W; Abou-Shanab R; Mubarak M
    Int J Phytoremediation; 2021; 23(9):958-968. PubMed ID: 33455425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize (
    Menhas S; Hayat K; Niazi NK; Zhou P; Amna ; Bundschuh J; Naeem M; Munis MFH; Yang X; Chaudhary HJ
    Int J Phytoremediation; 2021; 23(6):585-596. PubMed ID: 33166474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L.
    Praburaman L; Park SH; Cho M; Lee KJ; Ko JA; Han SS; Lee SH; Kamala-Kannan S; Oh BT
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):3172-3180. PubMed ID: 27864737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-application of indole-3-acetic acid/gibberellin and oxalic acid for phytoextraction of cadmium and lead with Sedum alfredii Hance from contaminated soil.
    Liang Y; Xiao X; Guo Z; Peng C; Zeng P; Wang X
    Chemosphere; 2021 Dec; 285():131420. PubMed ID: 34256202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid.
    Aderholt M; Vogelien DL; Koether M; Greipsson S
    Chemosphere; 2017 May; 175():85-96. PubMed ID: 28211339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus.
    Jing YX; Yan JL; He HD; Yang DJ; Xiao L; Zhong T; Yuan M; Cai XD; Li SB
    Int J Phytoremediation; 2014; 16(4):321-33. PubMed ID: 24912234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil.
    Babu AG; Shea PJ; Sudhakar D; Jung IB; Oh BT
    J Environ Manage; 2015 Mar; 151():160-6. PubMed ID: 25575343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ornamental Plant Efficiency for Heavy Metals Phytoextraction from Contaminated Soils Amended with Organic Materials.
    Awad M; El-Desoky MA; Ghallab A; Kubes J; Abdel-Mawly SE; Danish S; Ratnasekera D; Sohidul Islam M; Skalicky M; Brestic M; Baazeem A; Alotaibi SS; Javed T; Shabbir R; Fahad S; Habib Ur Rahman M; El Sabagh A
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34199536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area.
    Boechat CL; Giovanella P; Amorim MB; de Sá EL; de Oliveira Camargo FA
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):3063-3073. PubMed ID: 27854061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abundance and diversity of ammonia-oxidizing prokaryotes in the root-rhizosphere complex of Miscanthus × giganteus grown in heavy metal-contaminated soils.
    Ollivier J; Wanat N; Austruy A; Hitmi A; Joussein E; Welzl G; Munch JC; Schloter M
    Microb Ecol; 2012 Nov; 64(4):1038-46. PubMed ID: 22688859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China.
    Zhan F; Zeng W; Yuan X; Li B; Li T; Zu Y; Jiang M; Li Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7743-7751. PubMed ID: 30671759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments.
    Karer J; Zehetner F; Dunst G; Fessl J; Wagner M; Puschenreiter M; Stapkēviča M; Friesl-Hanl W; Soja G
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2506-2516. PubMed ID: 29127635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Remediation Potential of
    Zhang H; Xiong MB; Wang QX; Sun BW; Rao YC; Cheng Z; Xu XX; Yang ZB; Xian JR; Zhu XM; Yang SP; Yang YX
    Huan Jing Ke Xue; 2022 Aug; 43(8):4253-4261. PubMed ID: 35971721
    [No Abstract]   [Full Text] [Related]  

  • 39. Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: Implication for phytostabilization.
    Cui JL; Zhao YP; Chan TS; Zhang LL; Tsang DCW; Li XD
    J Hazard Mater; 2020 Jan; 381():121208. PubMed ID: 31563672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by
    Yahaghi Z; Shirvani M; Nourbakhsh F; de la Peña TC; Pueyo JJ; Talebi M
    J Microbiol Biotechnol; 2018 Jul; 28(7):1156-1167. PubMed ID: 29975995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.