These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 34995200)
1. Estimation of Tidal Volume Using Load Cells on a Hospital Bed. Jung H; Kimball JP; Receveur T; Gazi AH; Agdeppa ED; Inan OT IEEE J Biomed Health Inform; 2022 Jul; 26(7):3330-3341. PubMed ID: 34995200 [TBL] [Abstract][Full Text] [Related]
2. Tidal Volume and Instantaneous Respiration Rate Estimation using a Volumetric Surrogate Signal Acquired via a Smartphone Camera. Reyes BA; Reljin N; Kong Y; Nam Y; Chon KH IEEE J Biomed Health Inform; 2017 May; 21(3):764-777. PubMed ID: 26915142 [TBL] [Abstract][Full Text] [Related]
3. Towards Wearable Estimation of Tidal Volume via Electrocardiogram and Seismocardiogram Signals. Soliman MM; Ganti VG; Inan OT IEEE Sens J; 2022 Sep; 22(18):18093-18103. PubMed ID: 37091042 [TBL] [Abstract][Full Text] [Related]
4. An optimized method for estimating the tidal volume from intracardiac or body surface electrocardiographic signals: implications for estimating minute ventilation. Sayadi O; Weiss EH; Merchant FM; Puppala D; Armoundas AA Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H426-36. PubMed ID: 24906917 [TBL] [Abstract][Full Text] [Related]
5. Utility of a smartphone based system (cvrphone) to accurately determine apneic events from electrocardiographic signals. Sohn K; Merchant FM; Abohashem S; Kulkarni K; Singh JP; Heist EK; Owen C; Roberts JD; Isselbacher EM; Sana F; Armoundas AA PLoS One; 2019; 14(6):e0217217. PubMed ID: 31206522 [TBL] [Abstract][Full Text] [Related]
6. Towards Estimation of Tidal Volume and Respiratory Timings via Wearable-Patch-Based Impedance Pneumography in Ambulatory Settings. Berkebile JA; Mabrouk SA; Ganti VG; Srivatsa AV; Sanchez-Perez JA; Inan OT IEEE Trans Biomed Eng; 2022 Jun; 69(6):1909-1919. PubMed ID: 34818186 [TBL] [Abstract][Full Text] [Related]
7. Robust respiration rate estimation using adaptive Kalman filtering with textile ECG sensor and accelerometer. Lepine NN; Tajima T; Ogasawara T; Kasahara R; Koizumi H Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3797-3800. PubMed ID: 28269113 [TBL] [Abstract][Full Text] [Related]
8. A non-invasive continuous and real-time volumetric monitoring in spontaneous breathing subjects based on bioimpedance-ExSpiron®Xi: a validation study in healthy volunteers. Gatti S; Rezoagli E; Madotto F; Foti G; Bellani G J Clin Monit Comput; 2024 Apr; 38(2):539-551. PubMed ID: 38238635 [TBL] [Abstract][Full Text] [Related]
9. Contact-free assessments of respiratory rate and volume with load cells under the bed legs in ventilated patients: a prospective exploratory observational study. Inada A; Inaba S; Matsumura Y; Sugiyama T; Hanaoka N; Fujiyoshi N; Nozaki-Taguchi N; Sato Y; Isono S J Appl Physiol (1985); 2023 Jun; 134(6):1341-1348. PubMed ID: 37078503 [TBL] [Abstract][Full Text] [Related]
10. Non-Contact Respiratory Measurement Using a Depth Camera for Elderly People. Imano W; Kameyama K; Hollingdal M; Refsgaard J; Larsen K; Topp C; Kronborg SH; Gade JD; Dinesen B Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287154 [TBL] [Abstract][Full Text] [Related]
11. Respiratory Rate Estimation using PPG: A Deep Learning Approach. Bian D; Mehta P; Selvaraj N Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5948-5952. PubMed ID: 33019328 [TBL] [Abstract][Full Text] [Related]
12. Electrocardiogram Derived Respiration for Tracking Changes in Tidal Volume from a Wearable Armband. Lazaro J; Reljin N; Bailon R; Gil E; Noh Y; Laguna P; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():596-599. PubMed ID: 33018059 [TBL] [Abstract][Full Text] [Related]
13. Physiological Signal Monitoring Bed for Infants Based on Load-Cell Sensors. Lee WK; Yoon H; Han C; Joo KM; Park KS Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27007378 [TBL] [Abstract][Full Text] [Related]
14. An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal. Motin MA; Karmakar CK; Palaniswami M Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3817-3820. PubMed ID: 28269118 [TBL] [Abstract][Full Text] [Related]
15. Accurate Ballistocardiogram Based Heart Rate Estimation Using an Array of Load Cells in a Hospital Bed. Jung H; Kimball JP; Receveur T; Agdeppa ED; Inan OT IEEE J Biomed Health Inform; 2021 Sep; 25(9):3373-3383. PubMed ID: 33729962 [TBL] [Abstract][Full Text] [Related]
16. ResNet-BiLSTM: A Multiscale Deep Learning Model for Heartbeat Detection Using Ballistocardiogram Signals. Liu Y; Lyu Y; He Z; Yang Y; Li J; Pang Z; Zhong Q; Liu X; Zhang H J Healthc Eng; 2022; 2022():6388445. PubMed ID: 35126936 [TBL] [Abstract][Full Text] [Related]
17. Electrocardiogram-Derived Tidal Volume During Treadmill Stress Test. Milagro J; Hernando D; Lazaro J; Casajus JA; Garatachea N; Gil E; Bailon R IEEE Trans Biomed Eng; 2020 Jan; 67(1):193-202. PubMed ID: 30990416 [TBL] [Abstract][Full Text] [Related]
18. Employing an Incentive Spirometer to Calibrate Tidal Volumes Estimated from a Smartphone Camera. Reyes BA; Reljin N; Kong Y; Nam Y; Ha S; Chon KH Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999152 [TBL] [Abstract][Full Text] [Related]
19. An optimized method for the estimation of the respiratory rate from electrocardiographic signals: implications for estimating minute ventilation. Weiss EH; Sayadi O; Ramaswamy P; Merchant FM; Sajja N; Foley L; Laferriere S; Armoundas AA Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H437-47. PubMed ID: 24858847 [TBL] [Abstract][Full Text] [Related]