These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34995405)

  • 1. Carbamoylated Guanidine-Containing Polymers for Non-Covalent Functional Protein Delivery in Serum-Containing Media.
    Barrios A; Estrada M; Moon JH
    Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202116722. PubMed ID: 34995405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymers for cytosolic protein delivery.
    Lv J; Fan Q; Wang H; Cheng Y
    Biomaterials; 2019 Oct; 218():119358. PubMed ID: 31349095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block.
    Tan Z; Dhande YK; Reineke TM
    Bioconjug Chem; 2017 Dec; 28(12):2985-2997. PubMed ID: 29193962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Cargo Binding Strength in Polymer-Mediated Intracellular Protein Delivery.
    Posey ND; Hango CR; Minter LM; Tew GN
    Bioconjug Chem; 2018 Aug; 29(8):2679-2690. PubMed ID: 30080401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring guanidyl-rich polymers for efficient cytosolic protein delivery.
    Lv J; Tan E; Wang Y; Fan Q; Yu J; Cheng Y
    J Control Release; 2020 Apr; 320():412-420. PubMed ID: 32014564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Guanidinium-Rich Polymer for Efficient Cytosolic Delivery of Native Proteins.
    Yu C; Tan E; Xu Y; Lv J; Cheng Y
    Bioconjug Chem; 2019 Feb; 30(2):413-417. PubMed ID: 30383369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic Delivery of Proteins Using Amphiphilic Polymers with 2-Pyridinecarboxaldehyde Groups for Site-Selective Attachment.
    Sangsuwan R; Tachachartvanich P; Francis MB
    J Am Chem Soc; 2019 Feb; 141(6):2376-2383. PubMed ID: 30663873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Smart' delivery systems for biomolecular therapeutics.
    Stayton PS; El-Sayed ME; Murthy N; Bulmus V; Lackey C; Cheung C; Hoffman AS
    Orthod Craniofac Res; 2005 Aug; 8(3):219-25. PubMed ID: 16022724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Binding and Release by Polymeric Cell-Penetrating Peptide Mimics.
    Davis HC; Posey ND; Tew GN
    Biomacromolecules; 2022 Jan; 23(1):57-66. PubMed ID: 34879198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond hydrophilic polymers in amphiphilic polymer-based self-assembled NanoCarriers: Small hydrophilic carboxylate-capped disulfide drug delivery system and its multifunctionality and multispatial targetability.
    Choi YS; Cho H; Choi WG; Lee SS; Huh KM; Shim MS; Park IS; Cho YY; Lee JY; Lee HS; Kang HC
    Biomaterials; 2022 Jan; 280():121307. PubMed ID: 34894582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pH-Responsive Phase-Transition Polymer with High Serum Stability in Cytosolic Protein Delivery.
    Zhang S; Lv J; Gao P; Feng Q; Wang H; Cheng Y
    Nano Lett; 2021 Sep; 21(18):7855-7861. PubMed ID: 34478313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies.
    Dutta K; Kanjilal P; Das R; Thayumanavan S
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1821-1830. PubMed ID: 33034131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular and transdermal protein delivery mediated by non-covalent interactions with a synthetic guanidine-rich molecular carrier.
    Im J; Das S; Jeong D; Kim CJ; Lim HS; Kim KH; Chung SK
    Int J Pharm; 2017 Aug; 528(1-2):646-654. PubMed ID: 28634138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity examination of poly(glycoamidoguanidine)s: glycopolycations containing guanidine units for nucleic acid delivery.
    Taori VP; Lu H; Reineke TM
    Biomacromolecules; 2011 Jun; 12(6):2055-63. PubMed ID: 21506608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs.
    Kundu A; Nandi S; Das P; Nandi AK
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3512-23. PubMed ID: 25612470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent aggregation of oligomeric Artocarpus hirsuta lectin on thermal denaturation.
    Gaikwad SM; Islam Khan M
    Biochem Biophys Res Commun; 2003 Nov; 311(2):254-7. PubMed ID: 14592406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances in polymer-drug conjugated micelles in the delivery of anticancer drugs].
    Yin XL; Zhang B; Liu YJ; Zhang N
    Yao Xue Xue Bao; 2016 May; 51(5):710-6. PubMed ID: 29874007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diblock Terpolymers Are Tunable and pH Responsive Vehicles To Increase Hydrophobic Drug Solubility for Oral Administration.
    Tale S; Purchel AA; Dalsin MC; Reineke TM
    Mol Pharm; 2017 Nov; 14(11):4121-4127. PubMed ID: 28937226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collapse of a hydrophobic polymer in a mixture of denaturants.
    Das P; Xia Z; Zhou R
    Langmuir; 2013 Apr; 29(15):4877-82. PubMed ID: 23517381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondroitin Sulfate-Based pH-Sensitive Polymer-Modified Liposomes for Intracellular Antigen Delivery and Induction of Cancer Immunity.
    Okubo M; Miyazaki M; Yuba E; Harada A
    Bioconjug Chem; 2019 May; 30(5):1518-1529. PubMed ID: 30945847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.