These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34995606)

  • 1. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect.
    Chen X; Yang Y; Ke Y; Chen C; Xie S
    Sci Total Environ; 2022 Mar; 814():152852. PubMed ID: 34995606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of 17β-estradiol by Novosphingobium sp. ES2-1 in aqueous solution contaminated with tetracyclines.
    Li S; Liu J; Sun K; Yang Z; Ling W
    Environ Pollut; 2020 May; 260():114063. PubMed ID: 32014750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Degradation of Tetracycline Antibiotics: Mechanisms and Environmental Implications.
    Li Q; Zheng Y; Guo L; Xiao Y; Li H; Yang P; Xia L; Liu X; Chen Z; Li L; Zhang H
    J Agric Food Chem; 2024 Jun; ():. PubMed ID: 38835142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrelationships between tetracyclines and nitrogen cycling processes mediated by microorganisms: A review.
    Li W; Shi C; Yu Y; Ruan Y; Kong D; Lv X; Xu P; Awasthi MK; Dong M
    Bioresour Technol; 2021 Jan; 319():124036. PubMed ID: 33032187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetracyclines metal complexation: Significance and fate of mutual existence in the environment.
    Pulicharla R; Hegde K; Brar SK; Surampalli RY
    Environ Pollut; 2017 Feb; 221():1-14. PubMed ID: 28007426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Degradation pathways and main degradation products of tetracycline antibiotics: research progress].
    Li WM; Bao YY; Zhou QX
    Ying Yong Sheng Tai Xue Bao; 2012 Aug; 23(8):2300-8. PubMed ID: 23189713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells.
    Wang L; Liu Y; Wang C; Zhao X; Mahadeva GD; Wu Y; Ma J; Zhao F
    J Hazard Mater; 2018 Feb; 344():669-678. PubMed ID: 29154092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of triclosan through enhanced microbial biodegradation.
    Balakrishnan P; Mohan S
    J Hazard Mater; 2021 Oct; 420():126430. PubMed ID: 34252677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms.
    Chen J; Xie S
    Sci Total Environ; 2018 Nov; 640-641():1465-1477. PubMed ID: 30021313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of tetracyclines in seawater by laccase-mediator system.
    Wang X; Meng F; Zhang B; Xia Y
    Chemosphere; 2023 Aug; 333():138916. PubMed ID: 37172624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems.
    Guo Q; Yan J; Wen J; Hu Y; Chen Y; Wu W
    Sci Total Environ; 2016 Nov; 571():1304-11. PubMed ID: 27476727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera.
    Lu J; Wang Y; Li J; Mao L; Nguyen SH; Duarte T; Coin L; Bond P; Yuan Z; Guo J
    Environ Int; 2018 Dec; 121(Pt 2):1217-1226. PubMed ID: 30389380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering the metabolic pathway of novel Burkholderia sp. for efficient triclosan degradation and implication: Insight from exogenous bioaugmentation and toxicity pressure.
    Qiu L; Guo X; Liang Z; Lu Q; Wang S; Shim H
    Environ Pollut; 2023 Oct; 334():122111. PubMed ID: 37392866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial communities responded to tetracyclines and Cu(II) in constructed wetlands microcosms with Myriophyllum aquaticum.
    Guo X; Zhong H; Li P; Zhang C
    Ecotoxicol Environ Saf; 2020 Dec; 205():111362. PubMed ID: 32979807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management.
    Scaria J; Anupama KV; Nidheesh PV
    Sci Total Environ; 2021 Jun; 771():145291. PubMed ID: 33545482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community.
    Posman KM; DeRito CM; Madsen EL
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27913419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic remediation of antibiotic-polluted soil with different concentrations of tetracyclines.
    Li B; Zhang Z; Ma Y; Li Y; Zhu C; Li H
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):8212-8225. PubMed ID: 30697655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils.
    Thelusmond JR; Strathmann TJ; Cupples AM
    Sci Total Environ; 2019 Mar; 657():1138-1149. PubMed ID: 30677881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The key active degrader, metabolic pathway and microbial ecology of triclosan biodegradation in an anoxic/oxic system.
    Dai H; Gao J; Wang S; Li D; Wang Z
    Bioresour Technol; 2020 Dec; 317():124014. PubMed ID: 32827977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Progress in microbial remediation of antibiotic-residue contaminated environment].
    Wu Y; Feng P; Li R; Chen X; Li X; Sumpradit T; Liu P
    Sheng Wu Gong Cheng Xue Bao; 2019 Nov; 35(11):2133-2150. PubMed ID: 31814360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.