These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34995621)

  • 41. Electricity production from xylose using a mediator-less microbial fuel cell.
    Huang L; Zeng RJ; Angelidaki I
    Bioresour Technol; 2008 Jul; 99(10):4178-84. PubMed ID: 17964145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor.
    Eom H; Chung K; Kim I; Han JI
    Chemosphere; 2011 Oct; 85(4):672-6. PubMed ID: 21752422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Carbon-Neutral Photosynthetic Microbial Fuel Cell Powered by Microcystis aeruginosa.
    Ma M; Cao L; Chen L; Ying X; Deng Z
    Water Environ Res; 2015 Jul; 87(7):644-9. PubMed ID: 26163500
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sulfide as an alternative electron donor to glucose for power generation in mediator-less microbial fuel cell.
    Fatemi S; Ghoreyshi AA; Rahimnejad M; Darzi GN; Pant D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Oct; 52(12):1150-1157. PubMed ID: 28758874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness.
    Behera M; Ghangrekar MM
    Water Sci Technol; 2011; 64(12):2468-73. PubMed ID: 22170843
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper recovery combined with electricity production in a microbial fuel cell.
    Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-stage pretreatment of excess sludge for electricity generation in microbial fuel cell.
    Zhang Y; Zhao YG; Guo L; Gao M
    Environ Technol; 2019 Apr; 40(11):1349-1358. PubMed ID: 29281942
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous copper removal and electricity production and microbial community in microbial fuel cells with different cathode catalysts.
    Wu Y; Wang L; Jin M; Zhang K
    Bioresour Technol; 2020 Jun; 305():123166. PubMed ID: 32184010
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.
    Min B; Logan BE
    Environ Sci Technol; 2004 Nov; 38(21):5809-14. PubMed ID: 15575304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of Cr(vi) and
    Wang Y; Zhang X; Lin H
    RSC Adv; 2022 May; 12(24):15123-15132. PubMed ID: 35702437
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using live algae at the anode of a microbial fuel cell to generate electricity.
    Xu C; Poon K; Choi MM; Wang R
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15621-35. PubMed ID: 26018284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sustainable approach for leachate treatment: electricity generation in microbial fuel cell.
    You SJ; Zhao QL; Jiang JQ; Zhang JN; Zhao SQ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(12):2721-34. PubMed ID: 17114103
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unraveling the contemporary use of microbial fuel cell in pesticide degradation and simultaneous electricity generation: a review.
    Pednekar RR; Rajan AP
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):144-166. PubMed ID: 38048001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells.
    Habibul N; Hu Y; Wang YK; Chen W; Yu HQ; Sheng GP
    Environ Sci Technol; 2016 Apr; 50(7):3882-9. PubMed ID: 26962848
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell.
    Cao Y; Hu Y; Sun J; Hou B
    Bioelectrochemistry; 2010 Aug; 79(1):71-6. PubMed ID: 20053591
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell.
    Cao X; Song HL; Yu CY; Li XN
    Bioresour Technol; 2015; 189():87-93. PubMed ID: 25864035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bio-energy generation and treatment of tannery effluent using microbial fuel cell.
    Naveenkumar M; Senthilkumar K; Sampathkumar V; Anandakumar S; Thazeem B
    Chemosphere; 2022 Jan; 287(Pt 1):132090. PubMed ID: 34523435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of cathode/anode electron accumulation on soil microbial fuel cell power generation and heavy metal removal.
    Zhang J; Sun Y; Zhang H; Cao X; Wang H; Li X
    Environ Res; 2021 Jul; 198():111217. PubMed ID: 33974843
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Elucidating the effects of different photoanode materials on electricity generation and dye degradation in a sustainable hybrid system of photocatalytic fuel cell and peroxi-coagulation process.
    Nordin N; Ho LN; Ong SA; Ibrahim AH; Lee SL; Ong YP
    Chemosphere; 2019 Jan; 214():614-622. PubMed ID: 30292044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.