These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 34995637)
1. Machine learning based on routine laboratory indicators promoting the discrimination between active tuberculosis and latent tuberculosis infection. Luo Y; Xue Y; Song H; Tang G; Liu W; Bai H; Yuan X; Tong S; Wang F; Cai Y; Sun Z J Infect; 2022 May; 84(5):648-657. PubMed ID: 34995637 [TBL] [Abstract][Full Text] [Related]
2. Development of diagnostic algorithm using machine learning for distinguishing between active tuberculosis and latent tuberculosis infection. Luo Y; Xue Y; Liu W; Song H; Huang Y; Tang G; Wang F; Wang Q; Cai Y; Sun Z BMC Infect Dis; 2022 Dec; 22(1):965. PubMed ID: 36581808 [TBL] [Abstract][Full Text] [Related]
3. Combination of prealbumin and tuberculosis-specific antigen/phytohemagglutinin ratio for discriminating active tuberculosis from latent tuberculosis infection. Luo Y; Xue Y; Yuan X; Lin Q; Tang G; Mao L; Song H; Wang F; Sun Z Int J Clin Pract; 2021 Apr; 75(4):e13831. PubMed ID: 33175465 [TBL] [Abstract][Full Text] [Related]
4. Combination of HLA-DR on Luo Y; Xue Y; Tang G; Lin Q; Song H; Liu W; Yin B; Huang J; Wei W; Mao L; Wang F; Sun Z Front Immunol; 2021; 12():761209. PubMed ID: 34858413 [TBL] [Abstract][Full Text] [Related]
5. A combination of iron metabolism indexes and tuberculosis-specific antigen/phytohemagglutinin ratio for distinguishing active tuberculosis from latent tuberculosis infection. Luo Y; Xue Y; Lin Q; Tang G; Yuan X; Mao L; Song H; Wang F; Sun Z Int J Infect Dis; 2020 Aug; 97():190-196. PubMed ID: 32497795 [TBL] [Abstract][Full Text] [Related]
6. Activation Phenotype of Luo Y; Xue Y; Mao L; Lin Q; Tang G; Song H; Liu W; Tong S; Hou H; Huang M; Ouyang R; Wang F; Sun Z Front Immunol; 2021; 12():721013. PubMed ID: 34512645 [TBL] [Abstract][Full Text] [Related]
7. Combination of Blood Routine Examination and T-SPOT.TB Assay for Distinguishing Between Active Tuberculosis and Latent Tuberculosis Infection. Luo Y; Tang G; Yuan X; Lin Q; Mao L; Song H; Xue Y; Wu S; Ouyang R; Hou H; Wang F; Sun Z Front Cell Infect Microbiol; 2021; 11():575650. PubMed ID: 34277462 [TBL] [Abstract][Full Text] [Related]
8. Combination of mean spot sizes of ESAT-6 spot-forming cells and modified tuberculosis-specific antigen/phytohemagglutinin ratio of T-SPOT.TB assay in distinguishing between active tuberculosis and latent tuberculosis infection. Luo Y; Tang G; Lin Q; Mao L; Xue Y; Yuan X; Ouyang R; Wu S; Yu J; Zhou Y; Liu W; Hou H; Wang F; Sun Z J Infect; 2020 Jul; 81(1):81-89. PubMed ID: 32360883 [TBL] [Abstract][Full Text] [Related]
9. Lymphocyte Non-Specific Function Detection Facilitating the Stratification of Luo Y; Xue Y; Cai Y; Lin Q; Tang G; Song H; Liu W; Mao L; Yuan X; Zhou Y; Liu W; Wu S; Sun Z; Wang F Front Immunol; 2021; 12():641378. PubMed ID: 33953714 [TBL] [Abstract][Full Text] [Related]
10. [The ratio of tuberculosis-specific antigen to phytohemagglutinin in T-SPOT assay in the diagnosis of active tuberculosis]. Wang T; Tan YJ; Wu SJ; Huang M; Yin BT; Huang J; Wei N; Wei W; Wang F Zhonghua Jie He He Hu Xi Za Zhi; 2019 Apr; 42(4):262-267. PubMed ID: 30955283 [No Abstract] [Full Text] [Related]
11. A novel chemokine biomarker to distinguish active tuberculosis from latent tuberculosis: a cohort study. Li H; Ren W; Liang Q; Zhang X; Li Q; Shang Y; Ma L; Li S; Pang Y QJM; 2023 Dec; 116(12):1002-1009. PubMed ID: 37740371 [TBL] [Abstract][Full Text] [Related]
12. Utility of interferon gamma/tumor necrosis factor alpha FluoroSpot assay in differentiation between active tuberculosis and latent tuberculosis infection: a pilot study. Zhang L; Wan S; Zhou Z; Zhang Y; Liu X BMC Infect Dis; 2021 Jul; 21(1):651. PubMed ID: 34225667 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Th1 and Cytotoxic T Lymphocyte Epitopes of Gong W; Liang Y; Wang J; Liu Y; Xue Y; Mi J; Li P; Wang X; Wang L; Wu X Microbiol Spectr; 2022 Aug; 10(4):e0143822. PubMed ID: 35938824 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Mycobacterium tuberculosis-specific antibody responses for the discrimination of active and latent tuberculosis infection. Wang S; Wu J; Chen J; Gao Y; Zhang S; Zhou Z; Huang H; Shao L; Jin J; Zhang Y; Zhang W Int J Infect Dis; 2018 May; 70():1-9. PubMed ID: 29410147 [TBL] [Abstract][Full Text] [Related]
15. Diagnostic performance of plasma cytokine biosignature combination and MCP-1 as individual biomarkers for differentiating stages Mycobacterium tuberculosis infection. Luo J; Zhang M; Yan B; Li F; Guan S; Chang K; Jiang W; Xu H; Yuan T; Chen M; Deng S J Infect; 2019 Apr; 78(4):281-291. PubMed ID: 30528869 [TBL] [Abstract][Full Text] [Related]
16. Lymphocyte-Related Immunological Indicators for Stratifying Luo Y; Xue Y; Tang G; Cai Y; Yuan X; Lin Q; Song H; Liu W; Mao L; Zhou Y; Chen Z; Zhu Y; Liu W; Wu S; Wang F; Sun Z Front Immunol; 2021; 12():658843. PubMed ID: 34276653 [TBL] [Abstract][Full Text] [Related]
17. Predicting the Progress of Tuberculosis by Inflammatory Response-Related Genes Based on Multiple Machine Learning Comprehensive Analysis. Ma S; Peng P; Duan Z; Fan Y; Li X J Immunol Res; 2023; 2023():7829286. PubMed ID: 37228444 [TBL] [Abstract][Full Text] [Related]
18. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Li LS; Yang L; Zhuang L; Ye ZY; Zhao WG; Gong WP Mil Med Res; 2023 Nov; 10(1):58. PubMed ID: 38017571 [TBL] [Abstract][Full Text] [Related]
19. Construction of novel multi-epitope-based diagnostic biomarker HP16118P and its application in the differential diagnosis of Mycobacterium tuberculosis latent infection. Wang J; Jiang F; Cheng P; Ye Z; Li L; Yang L; Zhuang L; Gong W Mol Biomed; 2024 Apr; 5(1):15. PubMed ID: 38679629 [TBL] [Abstract][Full Text] [Related]
20. Serum Biomarker Profile Including CCL1, CXCL10, VEGF, and Adenosine Deaminase Activity Distinguishes Active From Remotely Acquired Latent Tuberculosis. Delemarre EM; van Hoorn L; Bossink AWJ; Drylewicz J; Joosten SA; Ottenhoff THM; Akkerman OW; Goletti D; Petruccioli E; Navarra A; van den Broek BTA; Paardekooper SPA; van Haeften I; Koenderman L; Lammers JJ; Thijsen SFT; Hofland RW; Nierkens S Front Immunol; 2021; 12():725447. PubMed ID: 34691031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]