These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34995797)

  • 1. Accurate brain-age models for routine clinical MRI examinations.
    Wood DA; Kafiabadi S; Busaidi AA; Guilhem E; Montvila A; Lynch J; Townend M; Agarwal S; Mazumder A; Barker GJ; Ourselin S; Cole JH; Booth TC
    Neuroimage; 2022 Apr; 249():118871. PubMed ID: 34995797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker.
    Cole JH; Poudel RPK; Tsagkrasoulis D; Caan MWA; Steves C; Spector TD; Montana G
    Neuroimage; 2017 Dec; 163():115-124. PubMed ID: 28765056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of brain age from routine T2-weighted spin-echo brain magnetic resonance images with a deep convolutional neural network.
    Hwang I; Yeon EK; Lee JY; Yoo RE; Kang KM; Yun TJ; Choi SH; Sohn CH; Kim H; Kim JH
    Neurobiol Aging; 2021 Sep; 105():78-85. PubMed ID: 34049061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning models for triaging hospital head MRI examinations.
    Wood DA; Kafiabadi S; Busaidi AA; Guilhem E; Montvila A; Lynch J; Townend M; Agarwal S; Mazumder A; Barker GJ; Ourselin S; Cole JH; Booth TC
    Med Image Anal; 2022 May; 78():102391. PubMed ID: 35183876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of head motion on brain age prediction using deep convolutional neural networks.
    Vakli P; Weiss B; Rozmann D; Erőss G; Nárai Á; Hermann P; Vidnyánszky Z
    Neuroimage; 2024 Jul; 294():120646. PubMed ID: 38750907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning to Predict Neonatal and Infant Brain Age from Myelination on Brain MRI Scans.
    Chen JV; Chaudhari G; Hess CP; Glenn OA; Sugrue LP; Rauschecker AM; Li Y
    Radiology; 2022 Dec; 305(3):678-687. PubMed ID: 35852429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning model for brain age prediction using minimally preprocessed T1w images as input.
    Dartora C; Marseglia A; Mårtensson G; Rukh G; Dang J; Muehlboeck JS; Wahlund LO; Moreno R; Barroso J; Ferreira D; Schiöth HB; Westman E; ; ; ;
    Front Aging Neurosci; 2023; 15():1303036. PubMed ID: 38259636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning-based Identification of Brain MRI Sequences Using a Model Trained on Large Multicentric Study Cohorts.
    Mahmutoglu MA; Preetha CJ; Meredig H; Tonn JC; Weller M; Wick W; Bendszus M; Brugnara G; Vollmuth P
    Radiol Artif Intell; 2024 Jan; 6(1):e230095. PubMed ID: 38166331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From a deep learning model back to the brain-Identifying regional predictors and their relation to aging.
    Levakov G; Rosenthal G; Shelef I; Raviv TR; Avidan G
    Hum Brain Mapp; 2020 Aug; 41(12):3235-3252. PubMed ID: 32320123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting brain age with complex networks: From adolescence to adulthood.
    Bellantuono L; Marzano L; La Rocca M; Duncan D; Lombardi A; Maggipinto T; Monaco A; Tangaro S; Amoroso N; Bellotti R
    Neuroimage; 2021 Jan; 225():117458. PubMed ID: 33099008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.
    Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P
    Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimising brain age estimation through transfer learning: A suite of pre-trained foundation models for improved performance and generalisability in a clinical setting.
    Wood DA; Townend M; Guilhem E; Kafiabadi S; Hammam A; Wei Y; Al Busaidi A; Mazumder A; Sasieni P; Barker GJ; Ourselin S; Cole JH; Booth TC
    Hum Brain Mapp; 2024 Mar; 45(4):e26625. PubMed ID: 38433665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model.
    Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K
    Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward MR protocol-agnostic, unbiased brain age predicted from clinical-grade MRIs.
    Valdes-Hernandez PA; Laffitte Nodarse C; Peraza JA; Cole JH; Cruz-Almeida Y
    Sci Rep; 2023 Nov; 13(1):19570. PubMed ID: 37950024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers.
    Engemann DA; Kozynets O; Sabbagh D; Lemaître G; Varoquaux G; Liem F; Gramfort A
    Elife; 2020 May; 9():. PubMed ID: 32423528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-channel attention-fusion neural network for brain age estimation: Accuracy, generality, and interpretation with 16,705 healthy MRIs across lifespan.
    He S; Pereira D; David Perez J; Gollub RL; Murphy SN; Prabhu S; Pienaar R; Robertson RL; Ellen Grant P; Ou Y
    Med Image Anal; 2021 Aug; 72():102091. PubMed ID: 34038818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study.
    Millar PR; Gordon BA; Luckett PH; Benzinger TLS; Cruchaga C; Fagan AM; Hassenstab JJ; Perrin RJ; Schindler SE; Allegri RF; Day GS; Farlow MR; Mori H; Nübling G; ; Bateman RJ; Morris JC; Ances BM
    Elife; 2023 Jan; 12():. PubMed ID: 36607335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing brain involvement in Fabry disease with deep learning and the brain-age paradigm.
    Montella A; Tranfa M; Scaravilli A; Barkhof F; Brunetti A; Cole J; Gravina M; Marrone S; Riccio D; Riccio E; Sansone C; Spinelli L; Petracca M; Pisani A; Cocozza S; Pontillo G
    Hum Brain Mapp; 2024 Apr; 45(5):e26599. PubMed ID: 38520360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.