These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34995904)

  • 1. Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats.
    Moncal KK; Tigli Aydın RS; Godzik KP; Acri TM; Heo DN; Rizk E; Wee H; Lewis GS; Salem AK; Ozbolat IT
    Biomaterials; 2022 Feb; 281():121333. PubMed ID: 34995904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of
    Moncal KK; Yeo M; Celik N; Acri TM; Rizk E; Wee H; Lewis GS; Salem AK; Ozbolat IT
    Biofabrication; 2022 Nov; 15(1):. PubMed ID: 36322966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor.
    Elangovan S; D'Mello SR; Hong L; Ross RD; Allamargot C; Dawson DV; Stanford CM; Johnson GK; Sumner DR; Salem AK
    Biomaterials; 2014 Jan; 35(2):737-47. PubMed ID: 24161167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Pilot Study Evaluating Combinatorial and Simultaneous Delivery of Polyethylenimine-Plasmid DNA Complexes Encoding for VEGF and PDGF for Bone Regeneration in Calvarial Bone Defects.
    D'Mello SR; Elangovan S; Hong L; Ross RD; Sumner DR; Salem AK
    Curr Pharm Biotechnol; 2015; 16(7):655-60. PubMed ID: 25934975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair.
    Raftery RM; Mencía-Castaño I; Sperger S; Chen G; Cavanagh B; Feichtinger GA; Redl H; Hacobian A; O'Brien FJ
    J Control Release; 2018 Aug; 283():20-31. PubMed ID: 29782946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation.
    Xu X; Qiu S; Zhang Y; Yin J; Min S
    Artif Cells Nanomed Biotechnol; 2017 Mar; 45(2):330-339. PubMed ID: 26961803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonviral Gene Delivery Embedded in Biomimetically Mineralized Matrices for Bone Tissue Engineering.
    Acri TM; Laird NZ; Jaidev LR; Meyerholz DK; Salem AK; Shin K
    Tissue Eng Part A; 2021 Aug; 27(15-16):1074-1083. PubMed ID: 33086991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic effects of bone-morphogenetic-protein-2 plasmid gene transfer.
    Seol YJ; Kim KH; Park YJ; Lee YM; Ku Y; Rhyu IC; Lee SJ; Han SB; Chung CP
    Biotechnol Appl Biochem; 2008 Jan; 49(Pt 1):85-96. PubMed ID: 17608624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo.
    Qiao C; Zhang K; Jin H; Miao L; Shi C; Liu X; Yuan A; Liu J; Li D; Zheng C; Zhang G; Li X; Yang B; Sun H
    Int J Nanomedicine; 2013; 8():2985-95. PubMed ID: 23990717
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Cunniffe GM; Gonzalez-Fernandez T; Daly A; Sathy BN; Jeon O; Alsberg E; Kelly DJ
    Tissue Eng Part A; 2017 Sep; 23(17-18):891-900. PubMed ID: 28806146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillofacial Reconstruction.
    Moncal KK; Gudapati H; Godzik KP; Heo DN; Kang Y; Rizk E; Ravnic DJ; Wee H; Pepley DF; Ozbolat V; Lewis GS; Moore JZ; Driskell RR; Samson TD; Ozbolat IT
    Adv Funct Mater; 2021 Jul; 31(29):. PubMed ID: 34421475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise control of osteogenesis for craniofacial defect repair: the role of direct osteoprogenitor contact in BMP-2-based bioprinting.
    Smith DM; Cray JJ; Weiss LE; Dai Fei EK; Shakir S; Rottgers SA; Losee JE; Campbell PG; Cooper GM
    Ann Plast Surg; 2012 Oct; 69(4):485-8. PubMed ID: 22972553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration.
    Kim TH; Singh RK; Kang MS; Kim JH; Kim HW
    Nanoscale; 2016 Apr; 8(15):8300-11. PubMed ID: 27035682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple growth factor delivery promotes functional bone regeneration following composite musculoskeletal trauma.
    Subbiah R; Ruehle MA; Klosterhoff BS; Lin ASP; Hettiaratchi MH; Willett NJ; Bertassoni LE; García AJ; Guldberg RE
    Acta Biomater; 2021 Jun; 127():180-192. PubMed ID: 33823326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Growth Factor Delivery for 3D Bioprinting of Vascularized Bone with Adipose-Derived Stem/Stromal Cells as a Single Cell Source.
    Goker M; Derici US; Gokyer S; Parmaksiz MG; Kaya B; Can A; Yilgor P
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1607-1619. PubMed ID: 38416687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats.
    Poldervaart MT; Wang H; van der Stok J; Weinans H; Leeuwenburgh SC; Öner FC; Dhert WJ; Alblas J
    PLoS One; 2013; 8(8):e72610. PubMed ID: 23977328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect.
    Kuttappan S; Mathew D; Jo JI; Tanaka R; Menon D; Ishimoto T; Nakano T; Nair SV; Nair MB; Tabata Y
    Acta Biomater; 2018 Sep; 78():36-47. PubMed ID: 30067947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects.
    Raftery RM; Mencía Castaño I; Chen G; Cavanagh B; Quinn B; Curtin CM; Cryan SA; O'Brien FJ
    Biomaterials; 2017 Dec; 149():116-127. PubMed ID: 29024837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects.
    Yu K; Huangfu H; Qin Q; Zhang Y; Gu X; Liu X; Zhang Y; Zhou Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47052-47065. PubMed ID: 36194837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.