These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 34996051)
1. A high-performance brain switch based on code-modulated visual evoked potentials. Zheng L; Pei W; Gao X; Zhang L; Wang Y J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996051 [No Abstract] [Full Text] [Related]
2. A Fast Brain Switch Based on Multi-Class Code-Modulated VEPs Zheng L; Wang Y; Pei W; Chen H Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3058-3061. PubMed ID: 31946533 [TBL] [Abstract][Full Text] [Related]
3. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter. Zhang D; Huang B; Wu W; Li S Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229 [TBL] [Abstract][Full Text] [Related]
4. High-Frequency Discrete-Interval Binary Sequence in Asynchronous C-VEP-Based BCI for Visual Fatigue Reduction. Lai E; Mai X; Ji M; Li S; Meng J IEEE J Biomed Health Inform; 2024 May; 28(5):2769-2780. PubMed ID: 38442053 [TBL] [Abstract][Full Text] [Related]
5. High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces. Sun Q; Zhang S; Dong G; Pei W; Gao X; Wang Y Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894311 [TBL] [Abstract][Full Text] [Related]
6. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI. Yang C; Yan X; Wang Y; Chen Y; Zhang H; Gao X J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34237711 [No Abstract] [Full Text] [Related]
7. Development of a Brain-Computer Interface Toggle Switch with Low False-Positive Rate Using Respiration-Modulated Photoplethysmography. Han CH; Kim E; Im CH Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936250 [TBL] [Abstract][Full Text] [Related]
8. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance. Wei Q; Huang Y; Li M; Lu Z Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316 [TBL] [Abstract][Full Text] [Related]
9. Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach. Pan J; Li Y; Zhang R; Gu Z; Li F IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):435-43. PubMed ID: 23673460 [TBL] [Abstract][Full Text] [Related]
10. A 120-target brain-computer interface based on code-modulated visual evoked potentials. Sun Q; Zheng L; Pei W; Gao X; Wang Y J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686 [TBL] [Abstract][Full Text] [Related]
11. Brain-computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature review. Martínez-Cagigal V; Thielen J; Santamaría-Vázquez E; Pérez-Velasco S; Desain P; Hornero R J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34763331 [No Abstract] [Full Text] [Related]
12. An idle state-detecting method based on transient visual evoked potentials for an asynchronous ERP-based BCI. Gong M; Xu G; Li M; Lin F J Neurosci Methods; 2020 May; 337():108670. PubMed ID: 32142909 [TBL] [Abstract][Full Text] [Related]
13. Improving the performance of P300-based BCIs by mitigating the effects of stimuli-related evoked potentials through regularized spatial filtering. Mobaien A; Boostani R; Sanei S J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38295418 [No Abstract] [Full Text] [Related]
14. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface. Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514 [TBL] [Abstract][Full Text] [Related]
15. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface. Thielen J; Marsman P; Farquhar J; Desain P J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182 [No Abstract] [Full Text] [Related]
16. A high-speed BCI based on code modulation VEP. Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527 [TBL] [Abstract][Full Text] [Related]
17. Recognition of the idle state based on a novel IFB-OCN method for an asynchronous brain-computer interface. Zhang W; Zhou T; Zhao J; Ji B; Wu Z J Neurosci Methods; 2020 Jul; 341():108776. PubMed ID: 32479971 [TBL] [Abstract][Full Text] [Related]
18. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals. Zhou Y; He S; Huang Q; Li Y IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938 [TBL] [Abstract][Full Text] [Related]
19. Using oscillatory and aperiodic neural activity features for identifying idle state in SSVEP-based BCIs reduces false triggers. Wang R; Zhou T; Li Z; Zhao J; Li X J Neural Eng; 2023 Dec; 20(6):. PubMed ID: 38016453 [No Abstract] [Full Text] [Related]
20. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces. Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]