These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 34996155)
1. Activatable Semiconducting Oligomer Amphiphile for Near-Infrared Luminescence Imaging of Biothiols. Xie C; Lyu Y; Zhen X; Miao Q; Pu K ACS Appl Bio Mater; 2018 Oct; 1(4):1147-1153. PubMed ID: 34996155 [TBL] [Abstract][Full Text] [Related]
2. Degradable Semiconducting Oligomer Amphiphile for Ratiometric Photoacoustic Imaging of Hypochlorite. Yin C; Zhen X; Fan Q; Huang W; Pu K ACS Nano; 2017 Apr; 11(4):4174-4182. PubMed ID: 28296388 [TBL] [Abstract][Full Text] [Related]
3. A Near-Infrared Fluorescent and Photoacoustic Probe for Visualizing Biothiols Dynamics in Tumor and Liver. Ding W; Yao S; Chen Y; Wu Y; Li Y; He W; Guo Z Molecules; 2023 Feb; 28(5):. PubMed ID: 36903474 [TBL] [Abstract][Full Text] [Related]
4. Bioimaging and Sensing Thiols In Vivo and in Tumor Tissues Based on a Near-Infrared Fluorescent Probe with Large Stokes Shift. Ma C; Yan D; Hou P; Liu X; Wang H; Xia C; Li G; Chen S Molecules; 2023 Jul; 28(15):. PubMed ID: 37570672 [TBL] [Abstract][Full Text] [Related]
5. Multimodal Biophotonics of Semiconducting Polymer Nanoparticles. Jiang Y; Pu K Acc Chem Res; 2018 Aug; 51(8):1840-1849. PubMed ID: 30074381 [TBL] [Abstract][Full Text] [Related]
6. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373 [TBL] [Abstract][Full Text] [Related]
7. Semiconducting Photosensitizer-Incorporated Copolymers as Near-Infrared Afterglow Nanoagents for Tumor Imaging. Cui D; Xie C; Li J; Lyu Y; Pu K Adv Healthc Mater; 2018 Sep; 7(18):e1800329. PubMed ID: 30080302 [TBL] [Abstract][Full Text] [Related]
8. Near-Infrared Probes for Biothiols (Cysteine, Homocysteine, and Glutathione): A Comprehensive Review. Kaushik R; Nehra N; Novakova V; Zimcik P ACS Omega; 2023 Jan; 8(1):98-126. PubMed ID: 36643462 [TBL] [Abstract][Full Text] [Related]
9. Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors. Xie C; Zhen X; Miao Q; Lyu Y; Pu K Adv Mater; 2018 May; 30(21):e1801331. PubMed ID: 29611257 [TBL] [Abstract][Full Text] [Related]
10. A TAT peptide-based ratiometric two-photon fluorescent probe for detecting biothiols and sequentially distinguishing GSH in mitochondria. Su P; Zhu Z; Tian Y; Liang L; Wu W; Cao J; Cheng B; Liu W; Tang Y Talanta; 2020 Oct; 218():121127. PubMed ID: 32797884 [TBL] [Abstract][Full Text] [Related]
11. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging. Yang L; Zhao M; Chen W; Zhu J; Xu W; Li Q; Pu K; Miao Q Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313117. PubMed ID: 38018329 [TBL] [Abstract][Full Text] [Related]
12. Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids. Zhang Y; Li Y; Yan XP Anal Chem; 2009 Jun; 81(12):5001-7. PubMed ID: 19518148 [TBL] [Abstract][Full Text] [Related]
13. Development of a Novel Lysosome-Targeted Ruthenium(II) Complex for Phosphorescence/Time-Gated Luminescence Assay of Biothiols. Gao Q; Zhang W; Song B; Zhang R; Guo W; Yuan J Anal Chem; 2017 Apr; 89(8):4517-4524. PubMed ID: 28322053 [TBL] [Abstract][Full Text] [Related]
14. A novel near-infrared fluorescent probe with a large Stokes shift for biothiol detection and application in in vitro and in vivo fluorescence imaging. Liu K; Shang H; Kong X; Lin W J Mater Chem B; 2017 Jun; 5(21):3836-3841. PubMed ID: 32264245 [TBL] [Abstract][Full Text] [Related]
15. Colorimetric and NIR Fluorescence Probe with Multiple Binding Sites for Distinguishing Detection of Cys/Hcy and GSH in Vivo. Xiong K; Huo F; Chao J; Zhang Y; Yin C Anal Chem; 2019 Jan; 91(2):1472-1478. PubMed ID: 30482012 [TBL] [Abstract][Full Text] [Related]
16. Fluorescent probe for sensitive discrimination of Hcy and Cys/GSH in living cells via dual-emission. Xu S; Zhou J; Dong X; Zhao W; Zhu Q Anal Chim Acta; 2019 Oct; 1074():123-130. PubMed ID: 31159932 [TBL] [Abstract][Full Text] [Related]
17. Activatable Multifunctional Persistent Luminescence Nanoparticle/Copper Sulfide Nanoprobe for in Vivo Luminescence Imaging-Guided Photothermal Therapy. Chen LJ; Sun SK; Wang Y; Yang CX; Wu SQ; Yan XP ACS Appl Mater Interfaces; 2016 Dec; 8(48):32667-32674. PubMed ID: 27934189 [TBL] [Abstract][Full Text] [Related]
18. A Self-Sustaining Near-Infrared Afterglow Chemiluminophore for High-Contrast Activatable Imaging. Zhu J; Chen W; Yang L; Zhang Y; Cheng B; Gu W; Li Q; Miao Q Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318545. PubMed ID: 38247345 [TBL] [Abstract][Full Text] [Related]
19. Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles. Li ZJ; Zheng XJ; Zhang L; Liang RP; Li ZM; Qiu JD Biosens Bioelectron; 2015 Jun; 68():668-674. PubMed ID: 25660511 [TBL] [Abstract][Full Text] [Related]
20. Ratiometric Imaging of MMP-2 Activity Facilitates Tumor Detection Using Activatable Near-Infrared Fluorescent Semiconducting Polymer Nanoparticles. Zeng W; Wu L; Sun Y; Wang Y; Wang J; Ye D Small; 2021 Sep; 17(36):e2101924. PubMed ID: 34309199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]