These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 34996446)
1. Group II intron and repeat-rich red algal mitochondrial genomes demonstrate the dynamic recent history of autocatalytic RNAs. Kim D; Lee J; Cho CH; Kim EJ; Bhattacharya D; Yoon HS BMC Biol; 2022 Jan; 20(1):2. PubMed ID: 34996446 [TBL] [Abstract][Full Text] [Related]
2. Independent Size Expansions and Intron Proliferation in Red Algal Plastid and Mitochondrial Genomes. van Beveren F; Eme L; López-García P; Ciobanu M; Moreira D Genome Biol Evol; 2022 Apr; 14(4):. PubMed ID: 35289373 [TBL] [Abstract][Full Text] [Related]
3. The New Red Algal Subphylum Proteorhodophytina Comprises the Largest and Most Divergent Plastid Genomes Known. Muñoz-Gómez SA; Mejía-Franco FG; Durnin K; Colp M; Grisdale CJ; Archibald JM; Slamovits CH Curr Biol; 2017 Jun; 27(11):1677-1684.e4. PubMed ID: 28528908 [TBL] [Abstract][Full Text] [Related]
4. Recent mobility of plastid encoded group II introns and twintrons in five strains of the unicellular red alga Porphyridium. Perrineau MM; Price DC; Mohr G; Bhattacharya D PeerJ; 2015; 3():e1017. PubMed ID: 26157604 [TBL] [Abstract][Full Text] [Related]
5. Mitogenome features and phylogenetic analysis of red algae, Prakash Patil M; Kim YR; Nakashita S; Kim JO; Kim K J Genet; 2024; 103():. PubMed ID: 38831649 [TBL] [Abstract][Full Text] [Related]
6. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. Janouškovec J; Liu SL; Martone PT; Carré W; Leblanc C; Collén J; Keeling PJ PLoS One; 2013; 8(3):e59001. PubMed ID: 23536846 [TBL] [Abstract][Full Text] [Related]
7. Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Nishimura Y; Shiratori T; Ishida KI; Hashimoto T; Ohkuma M; Inagaki Y Sci Rep; 2019 Mar; 9(1):4850. PubMed ID: 30890720 [TBL] [Abstract][Full Text] [Related]
8. Genomic Rearrangements and Sequence Evolution across Brown Algal Organelles. Starko S; Bringloe TT; Gomez MS; Darby H; Graham SW; Martone PT Genome Biol Evol; 2021 Jul; 13(7):. PubMed ID: 34061182 [TBL] [Abstract][Full Text] [Related]
9. Divergence times and plastid phylogenomics within the intron-rich order Erythropeltales (Compsopogonophyceae, Rhodophyta). Preuss M; Verbruggen H; West JA; Zuccarello GC J Phycol; 2021 Jun; 57(3):1035-1044. PubMed ID: 33657649 [TBL] [Abstract][Full Text] [Related]
10. Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. Tanifuji G; Onodera NT; Brown MW; Curtis BA; Roger AJ; Ka-Shu Wong G; Melkonian M; Archibald JM BMC Genomics; 2014 May; 15(1):374. PubMed ID: 24885563 [TBL] [Abstract][Full Text] [Related]
11. Expansion of phycobilisome linker gene families in mesophilic red algae. Lee J; Kim D; Bhattacharya D; Yoon HS Nat Commun; 2019 Oct; 10(1):4823. PubMed ID: 31645564 [TBL] [Abstract][Full Text] [Related]
12. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae. Burger G; Saint-Louis D; Gray MW; Lang BF Plant Cell; 1999 Sep; 11(9):1675-94. PubMed ID: 10488235 [TBL] [Abstract][Full Text] [Related]
13. The complete mitochondrial genome of Cycas debaoensis revealed unexpected static evolution in gymnosperm species. Habib S; Dong S; Liu Y; Liao W; Zhang S PLoS One; 2021; 16(7):e0255091. PubMed ID: 34293066 [TBL] [Abstract][Full Text] [Related]
14. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Lee J; Kim KM; Yang EC; Miller KA; Boo SM; Bhattacharya D; Yoon HS Sci Rep; 2016 Mar; 6():23744. PubMed ID: 27030297 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum. Tajima N; Sato S; Maruyama F; Kurokawa K; Ohta H; Tabata S; Sekine K; Moriyama T; Sato N J Plant Res; 2014 May; 127(3):389-97. PubMed ID: 24595640 [TBL] [Abstract][Full Text] [Related]
16. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. Joardar V; Abrams NF; Hostetler J; Paukstelis PJ; Pakala S; Pakala SB; Zafar N; Abolude OO; Payne G; Andrianopoulos A; Denning DW; Nierman WC BMC Genomics; 2012 Dec; 13():698. PubMed ID: 23234273 [TBL] [Abstract][Full Text] [Related]
17. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids. Smith DR; Keeling PJ J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077 [TBL] [Abstract][Full Text] [Related]
18. The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group i introns. Férandon C; Moukha S; Callac P; Benedetto JP; Castroviejo M; Barroso G PLoS One; 2010 Nov; 5(11):e14048. PubMed ID: 21124976 [TBL] [Abstract][Full Text] [Related]
19. Comparative mitochondrial genomics of cryptophyte algae: gene shuffling and dynamic mobile genetic elements. Kim JI; Yoon HS; Yi G; Shin W; Archibald JM BMC Genomics; 2018 Apr; 19(1):275. PubMed ID: 29678149 [TBL] [Abstract][Full Text] [Related]
20. The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae. Wong DK; Grisdale CJ; Slat VA; Rader SD; Fast NM J Eukaryot Microbiol; 2023 Jan; 70(1):e12927. PubMed ID: 35662328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]