These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Genetic associations of breast and prostate cancer are enriched for regulatory elements identified in disease-related tissues. Chen H; Kichaev G; Bien SA; MacDonald JW; Wang L; Bammler TK; Auer P; Pasaniuc B; Lindström S Hum Genet; 2019 Oct; 138(10):1091-1104. PubMed ID: 31230194 [TBL] [Abstract][Full Text] [Related]
3. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. Brown CD; Mangravite LM; Engelhardt BE PLoS Genet; 2013; 9(8):e1003649. PubMed ID: 23935528 [TBL] [Abstract][Full Text] [Related]
4. FORGEdb: a tool for identifying candidate functional variants and uncovering target genes and mechanisms for complex diseases. Breeze CE; Haugen E; Gutierrez-Arcelus M; Yao X; Teschendorff A; Beck S; Dunham I; Stamatoyannopoulos J; Franceschini N; Machiela MJ; Berndt SI Genome Biol; 2024 Jan; 25(1):3. PubMed ID: 38167104 [TBL] [Abstract][Full Text] [Related]
6. Enrichment of colorectal cancer associations in functional regions: Insight for using epigenomics data in the analysis of whole genome sequence-imputed GWAS data. Bien SA; Auer PL; Harrison TA; Qu C; Connolly CM; Greenside PG; Chen S; Berndt SI; Bézieau S; Kang HM; Huyghe J; Brenner H; Casey G; Chan AT; Hopper JL; Banbury BL; Chang-Claude J; Chanock SJ; Haile RW; Hoffmeister M; Fuchsberger C; Jenkins MA; Leal SM; Lemire M; Newcomb PA; Gallinger S; Potter JD; Schoen RE; Slattery ML; Smith JD; Le Marchand L; White E; Zanke BW; Abeçasis GR; Carlson CS; Peters U; Nickerson DA; Kundaje A; Hsu L; PLoS One; 2017; 12(11):e0186518. PubMed ID: 29161273 [TBL] [Abstract][Full Text] [Related]
7. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases. Li Y; Kellis M Nucleic Acids Res; 2016 Oct; 44(18):e144. PubMed ID: 27407109 [TBL] [Abstract][Full Text] [Related]
8. Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. Zhang X; Li TY; Xiao HM; Ehrlich KC; Shen H; Deng HW; Ehrlich M Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163195 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants. Markunas CA; Johnson EO; Hancock DB Hum Genet; 2017 Jul; 136(7):911-919. PubMed ID: 28567521 [TBL] [Abstract][Full Text] [Related]
10. Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data. Gerasimova A; Chavez L; Li B; Seumois G; Greenbaum J; Rao A; Vijayanand P; Peters B PLoS One; 2013; 8(1):e54359. PubMed ID: 23382893 [TBL] [Abstract][Full Text] [Related]
11. Identification of breast cancer associated variants that modulate transcription factor binding. Liu Y; Walavalkar NM; Dozmorov MG; Rich SS; Civelek M; Guertin MJ PLoS Genet; 2017 Sep; 13(9):e1006761. PubMed ID: 28957321 [TBL] [Abstract][Full Text] [Related]
12. Predicting regulatory variants using a dense epigenomic mapped CNN model elucidated the molecular basis of trait-tissue associations. Pei G; Hu R; Dai Y; Manuel AM; Zhao Z; Jia P Nucleic Acids Res; 2021 Jan; 49(1):53-66. PubMed ID: 33300042 [TBL] [Abstract][Full Text] [Related]
13. INFERNO: inferring the molecular mechanisms of noncoding genetic variants. Amlie-Wolf A; Tang M; Mlynarski EE; Kuksa PP; Valladares O; Katanic Z; Tsuang D; Brown CD; Schellenberg GD; Wang LS Nucleic Acids Res; 2018 Sep; 46(17):8740-8753. PubMed ID: 30113658 [TBL] [Abstract][Full Text] [Related]
15. Allele-specific epigenetic activity in prostate cancer and normal prostate tissue implicates prostate cancer risk mechanisms. Shetty A; Seo JH; Bell CA; O'Connor EP; Pomerantz MM; Freedman ML; Gusev A Am J Hum Genet; 2021 Nov; 108(11):2071-2085. PubMed ID: 34699744 [TBL] [Abstract][Full Text] [Related]