These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 34996872)
1. Photosynthetic assimilation of CO Mallén-Ponce MJ; Pérez-Pérez ME; Crespo JL Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996872 [TBL] [Abstract][Full Text] [Related]
2. Target of Rapamycin Inhibition in Mubeen U; Jüppner J; Alpers J; Hincha DK; Giavalisco P Plant Cell; 2018 Oct; 30(10):2240-2254. PubMed ID: 30228127 [TBL] [Abstract][Full Text] [Related]
3. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Krishnan A; Kumaraswamy GK; Vinyard DJ; Gu H; Ananyev G; Posewitz MC; Dismukes GC Plant J; 2015 Mar; 81(6):947-60. PubMed ID: 25645872 [TBL] [Abstract][Full Text] [Related]
4. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. Jüppner J; Mubeen U; Leisse A; Caldana C; Wiszniewski A; Steinhauser D; Giavalisco P Plant J; 2018 Jan; 93(2):355-376. PubMed ID: 29172247 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Crespo JL; Díaz-Troya S; Florencio FJ Plant Physiol; 2005 Dec; 139(4):1736-49. PubMed ID: 16299168 [TBL] [Abstract][Full Text] [Related]
6. Analyzing the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR. Mallén-Ponce MJ; Pérez-Pérez ME; Crespo JL New Phytol; 2022 Nov; 236(4):1261-1266. PubMed ID: 36052700 [TBL] [Abstract][Full Text] [Related]
7. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. Werth EG; McConnell EW; Couso Lianez I; Perrine Z; Crespo JL; Umen JG; Hicks LM New Phytol; 2019 Jan; 221(1):247-260. PubMed ID: 30040123 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas. Díaz-Troya S; Pérez-Pérez ME; Pérez-Martín M; Moes S; Jeno P; Florencio FJ; Crespo JL Plant Physiol; 2011 Oct; 157(2):730-41. PubMed ID: 21825107 [TBL] [Abstract][Full Text] [Related]
9. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. Gao H; Wang Y; Fei X; Wright DA; Spalding MH Plant J; 2015 Apr; 82(1):1-11. PubMed ID: 25660294 [TBL] [Abstract][Full Text] [Related]
10. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Fukuzawa H; Miura K; Ishizaki K; Kucho KI; Saito T; Kohinata T; Ohyama K Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5347-52. PubMed ID: 11287669 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of TOR in Ford MM; Smythers AL; McConnell EW; Lowery SC; Kolling DRJ; Hicks LM Cells; 2019 Sep; 8(10):. PubMed ID: 31569396 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. Machingura MC; Bajsa-Hirschel J; Laborde SM; Schwartzenburg JB; Mukherjee B; Mukherjee A; Pollock SV; Förster B; Price GD; Moroney JV J Exp Bot; 2017 Jun; 68(14):3879-3890. PubMed ID: 28633328 [TBL] [Abstract][Full Text] [Related]
13. Microalgal Target of Rapamycin (TOR): A Central Regulatory Hub for Growth, Stress Response and Biomass Production. Pancha I; Chokshi K; Tanaka K; Imamura S Plant Cell Physiol; 2020 Apr; 61(4):675-684. PubMed ID: 32105317 [TBL] [Abstract][Full Text] [Related]
14. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Pérez-Pérez ME; Couso I; Crespo JL Biomolecules; 2017 Jul; 7(3):. PubMed ID: 28704927 [TBL] [Abstract][Full Text] [Related]
15. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii. Patel AK; Huang EL; Low-Décarie E; Lefsrud MG J Proteome Res; 2015 Aug; 14(8):3051-67. PubMed ID: 25997359 [TBL] [Abstract][Full Text] [Related]
16. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient. Wang Y; Stessman DJ; Spalding MH Plant J; 2015 May; 82(3):429-448. PubMed ID: 25765072 [TBL] [Abstract][Full Text] [Related]
17. Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii. Park YI; Karlsson J; Rojdestvenski I; Pronina N; Klimov V; Oquist G; Samuelsson G FEBS Lett; 1999 Feb; 444(1):102-5. PubMed ID: 10037156 [TBL] [Abstract][Full Text] [Related]
18. TOR inhibition interrupts the metabolic homeostasis by shifting the carbon-nitrogen balance in Mubeen U; Giavalisco P; Caldana C Plant Signal Behav; 2019; 14(11):1670595. PubMed ID: 31583958 [TBL] [Abstract][Full Text] [Related]
19. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii. Berger H; Blifernez-Klassen O; Ballottari M; Bassi R; Wobbe L; Kruse O Mol Plant; 2014 Oct; 7(10):1545-59. PubMed ID: 25038233 [TBL] [Abstract][Full Text] [Related]
20. The Calvin-Benson-Bassham cycle in C Ludwig M; Hartwell J; Raines CA; Simkin AJ Semin Cell Dev Biol; 2024 Mar; 155(Pt A):10-22. PubMed ID: 37544777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]