These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 34996872)
21. Target of rapamycin and LST8 proteins associate with membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas reinhardtii. Díaz-Troya S; Florencio FJ; Crespo JL Eukaryot Cell; 2008 Feb; 7(2):212-22. PubMed ID: 18039939 [TBL] [Abstract][Full Text] [Related]
22. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Joshi HM; Tabita FR Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14515-20. PubMed ID: 8962083 [TBL] [Abstract][Full Text] [Related]
23. LCI1, a Chlamydomonas reinhardtii plasma membrane protein, functions in active CO Kono A; Spalding MH Plant J; 2020 Jun; 102(6):1127-1141. PubMed ID: 32248584 [TBL] [Abstract][Full Text] [Related]
24. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae. Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321 [TBL] [Abstract][Full Text] [Related]
25. BiP links TOR signaling to ER stress in Chlamydomonas. Crespo JL Plant Signal Behav; 2012 Feb; 7(2):273-5. PubMed ID: 22353876 [TBL] [Abstract][Full Text] [Related]
26. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Imamura S; Kawase Y; Kobayashi I; Sone T; Era A; Miyagishima SY; Shimojima M; Ohta H; Tanaka K Plant Mol Biol; 2015 Oct; 89(3):309-18. PubMed ID: 26350402 [TBL] [Abstract][Full Text] [Related]
27. [Mechanism of CO2-responsive transcriptional regulation in photosynthetic organisms: carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii]. Fukuzawa H; Yamano T Tanpakushitsu Kakusan Koso; 2005 Jul; 50(8):958-65. PubMed ID: 16001801 [No Abstract] [Full Text] [Related]
28. Acclimation of photosynthetic microorganisms to changing ambient CO2 concentration. Kaplan A; Helman Y; Tchernov D; Reinhold L Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4817-8. PubMed ID: 11320226 [No Abstract] [Full Text] [Related]
29. Metabolomic response of Chlamydomonas reinhardtii to the inhibition of target of rapamycin (TOR) by rapamycin. Lee DY; Fiehn O J Microbiol Biotechnol; 2013; 23(7):923-31. PubMed ID: 23727803 [TBL] [Abstract][Full Text] [Related]
30. Inositol polyphosphates and target of rapamycin kinase signalling govern photosystem II protein phosphorylation and photosynthetic function under light stress in Chlamydomonas. Couso I; Smythers AL; Ford MM; Umen JG; Crespo JL; Hicks LM New Phytol; 2021 Dec; 232(5):2011-2025. PubMed ID: 34529857 [TBL] [Abstract][Full Text] [Related]
31. Structure and function of LCI1: a plasma membrane CO Kono A; Chou TH; Radhakrishnan A; Bolla JR; Sankar K; Shome S; Su CC; Jernigan RL; Robinson CV; Yu EW; Spalding MH Plant J; 2020 Jun; 102(6):1107-1126. PubMed ID: 32168387 [TBL] [Abstract][Full Text] [Related]
32. Location of the photosynthetic carbon metabolism in microcompartments and separated phases in microalgal cells. Launay H; Avilan L; Gérard C; Parsiegla G; Receveur-Brechot V; Gontero B; Carriere F FEBS Lett; 2023 Dec; 597(23):2853-2878. PubMed ID: 37827572 [TBL] [Abstract][Full Text] [Related]
33. The Integration of Algal Carbon Concentration Mechanism Components into Tobacco Chloroplasts Increases Photosynthetic Efficiency and Biomass. Nölke G; Barsoum M; Houdelet M; Arcalís E; Kreuzaler F; Fischer R; Schillberg S Biotechnol J; 2019 Mar; 14(3):e1800170. PubMed ID: 29888874 [TBL] [Abstract][Full Text] [Related]
34. Hydrogen Production by CO Grechanik VI; Bol'shakov MA; Tsygankov AA Biochemistry (Mosc); 2022 Oct; 87(10):1098-1108. PubMed ID: 36273878 [TBL] [Abstract][Full Text] [Related]
35. Exaptive Evolution of Target of Rapamycin Signaling in Multicellular Eukaryotes. Brunkard JO Dev Cell; 2020 Jul; 54(2):142-155. PubMed ID: 32649861 [TBL] [Abstract][Full Text] [Related]
36. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Lee DY; Park JJ; Barupal DK; Fiehn O Mol Cell Proteomics; 2012 Oct; 11(10):973-88. PubMed ID: 22787274 [TBL] [Abstract][Full Text] [Related]
37. The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Xiang Y; Zhang J; Weeks DP Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5341-6. PubMed ID: 11309511 [TBL] [Abstract][Full Text] [Related]
38. The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Pollock SV; Prout DL; Godfrey AC; Lemaire SD; Moroney JV Plant Mol Biol; 2004 Sep; 56(1):125-32. PubMed ID: 15604732 [TBL] [Abstract][Full Text] [Related]
39. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. Atkinson N; Feike D; Mackinder LC; Meyer MT; Griffiths H; Jonikas MC; Smith AM; McCormick AJ Plant Biotechnol J; 2016 May; 14(5):1302-15. PubMed ID: 26538195 [TBL] [Abstract][Full Text] [Related]
40. Triacylglyceride production and autophagous responses in Chlamydomonas reinhardtii depend on resource allocation and carbon source. Davey MP; Horst I; Duong GH; Tomsett EV; Litvinenko AC; Howe CJ; Smith AG Eukaryot Cell; 2014 Mar; 13(3):392-400. PubMed ID: 24413660 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]