BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34997012)

  • 1. Hyperrealistic neural decoding for reconstructing faces from fMRI activations via the GAN latent space.
    Dado T; Güçlütürk Y; Ambrogioni L; Ras G; Bosch S; van Gerven M; Güçlü U
    Sci Rep; 2022 Jan; 12(1):141. PubMed ID: 34997012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model.
    Ferrante M; Boccato T; Passamonti L; Toschi N
    J Neural Eng; 2024 Jun; 21(4):. PubMed ID: 38885689
    [No Abstract]   [Full Text] [Related]  

  • 3. Reconstructing controllable faces from brain activity with hierarchical multiview representations.
    Ren Z; Li J; Xue X; Li X; Yang F; Jiao Z; Gao X
    Neural Netw; 2023 Sep; 166():487-500. PubMed ID: 37574622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception-to-Image: Reconstructing Natural Images from the Brain Activity of Visual Perception.
    Huang W; Yan H; Wang C; Li J; Zuo Z; Zhang J; Shen Z; Chen H
    Ann Biomed Eng; 2020 Sep; 48(9):2323-2332. PubMed ID: 32285343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing faces from fMRI patterns using deep generative neural networks.
    VanRullen R; Reddy L
    Commun Biol; 2019; 2():193. PubMed ID: 31123717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain2GAN: Feature-disentangled neural encoding and decoding of visual perception in the primate brain.
    Dado T; Papale P; Lozano A; Le L; Wang F; van Gerven M; Roelfsema P; Güçlütürk Y; Güçlü U
    PLoS Comput Biol; 2024 May; 20(5):e1012058. PubMed ID: 38709818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Alignment-Auxiliary Generative Adversarial Network-Based Visual Stimuli Reconstruction via Multi-Subject fMRI.
    Huang S; Sun L; Yousefnezhad M; Wang M; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2715-2725. PubMed ID: 37279132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BigGAN-based Bayesian Reconstruction of Natural Images from Human Brain Activity.
    Qiao K; Chen J; Wang L; Zhang C; Tong L; Yan B
    Neuroscience; 2020 Sep; 444():92-105. PubMed ID: 32736069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing Perceived and Retrieved Faces from Activity Patterns in Lateral Parietal Cortex.
    Lee H; Kuhl BA
    J Neurosci; 2016 Jun; 36(22):6069-82. PubMed ID: 27251627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing seen image from brain activity by visually-guided cognitive representation and adversarial learning.
    Ren Z; Li J; Xue X; Li X; Yang F; Jiao Z; Gao X
    Neuroimage; 2021 Mar; 228():117602. PubMed ID: 33395572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finding Distributed Needles in Neural Haystacks.
    Cox CR; Rogers TT
    J Neurosci; 2021 Feb; 41(5):1019-1032. PubMed ID: 33334868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural portraits of perception: reconstructing face images from evoked brain activity.
    Cowen AS; Chun MM; Kuhl BA
    Neuroimage; 2014 Jul; 94():12-22. PubMed ID: 24650597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semantics-Guided Hierarchical Feature Encoding Generative Adversarial Network for Visual Image Reconstruction From Brain Activity.
    Meng L; Yang C
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1267-1283. PubMed ID: 38498745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Natural Image Reconstruction from Human Brain Activity Based on Conditional Progressively Growing Generative Adversarial Networks.
    Huang W; Yan H; Wang C; Yang X; Li J; Zuo Z; Zhang J; Chen H
    Neurosci Bull; 2021 Mar; 37(3):369-379. PubMed ID: 33222145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative adversarial networks for reconstructing natural images from brain activity.
    Seeliger K; Güçlü U; Ambrogioni L; Güçlütürk Y; van Gerven MAJ
    Neuroimage; 2018 Nov; 181():775-785. PubMed ID: 30031932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural decoding of visual stimuli varies with fluctuations in global network efficiency.
    Cocchi L; Yang Z; Zalesky A; Stelzer J; Hearne LJ; Gollo LL; Mattingley JB
    Hum Brain Mapp; 2017 Jun; 38(6):3069-3080. PubMed ID: 28342260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal deep neural decoding reveals highly resolved spatiotemporal profile of visual object representation in humans.
    Watanabe N; Miyoshi K; Jimura K; Shimane D; Keerativittayayut R; Nakahara K; Takeda M
    Neuroimage; 2023 Jul; 275():120164. PubMed ID: 37169115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks.
    Li H; Fan Y
    Neuroimage; 2019 Nov; 202():116059. PubMed ID: 31362049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CNN-transformer hybrid approach for decoding visual neural activity into text.
    Zhang J; Li C; Liu G; Min M; Wang C; Li J; Wang Y; Yan H; Zuo Z; Huang W; Chen H
    Comput Methods Programs Biomed; 2022 Feb; 214():106586. PubMed ID: 34963092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.