These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34997026)

  • 1. Research on the rapid combustion process of butane under microwave discharge.
    Tang Q; Hu Z; Tao Z; Ye D; Tang J
    Sci Rep; 2022 Jan; 12(1):10. PubMed ID: 34997026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Microwave Power and Gas Flow Rate on the Combustion Characteristics of the ADN-based Liquid Propellant.
    Pan S; Zhao C; Zhang D; Hou Y; Su G; Liu X; Yu Y; Shen J
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters.
    Leins M; Gaiser S; Schulz A; Walker M; Schumacher U; Hirth T
    J Vis Exp; 2015 Apr; (98):. PubMed ID: 25938699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.
    Kwak HS; Uhm HS; Hong YC; Choi EH
    Sci Rep; 2015 Dec; 5():18436. PubMed ID: 26674957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of some aspects of the spray process in a single wire arc plasma spray system using high speed camera.
    Tiwari N; Sahasrabudhe SN; Tak AK; Barve DN; Das AK
    Rev Sci Instrum; 2012 Feb; 83(2):025110. PubMed ID: 22380128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An atmospheric microwave plasma-based distributed system for medical waste treatment.
    Jie Z; Liu C; Xia D; Zhang G
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):51314-51326. PubMed ID: 36809622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Research on Microwave Ignition and Combustion Characteristics of ADN-Based Liquid Propellant.
    Shen J; Yu Y; Liu X; Cao J
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.
    Uhm HS; Kwak HS; Hong YC
    Environ Pollut; 2016 Apr; 211():191-7. PubMed ID: 26774765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor.
    Kim JH; Cho CH; Shin DH; Hong YC; Shin YW
    J Hazard Mater; 2015 Aug; 294():41-6. PubMed ID: 25841085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of a new carbon tetrachloride destruction system based on a microwave plasma torch operating at atmospheric pressure.
    Rubio SJ; Quintero MC; Rodero A; Rodriguez JM
    J Hazard Mater; 2007 Sep; 148(1-2):419-27. PubMed ID: 17408853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of 2.45 GHz Semiconductor Microwave System for Combustion Ignition Enhancement and Failure Analysis.
    Ikeda Y
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Investigation on the Spectral Characteristics of a Plasma Jet in Atmospheric Argon Glow Discharge].
    Li XC; Zhang CY; Li JY; Bao WT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3305-9. PubMed ID: 26964199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a fully automatic microwave plasma torch system.
    Wang Y; Wang Z; Wu D; Wu Z; Zhu L; Ma W; Tang Y; Shan J
    Rev Sci Instrum; 2019 May; 90(5):055112. PubMed ID: 31153229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.
    Liu C; Zhang G; Xie H; Deng L; Wang Z
    Rev Sci Instrum; 2018 Mar; 89(3):034701. PubMed ID: 29604739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure.
    Rubio SJ; Quintero MC; Rodero A
    J Hazard Mater; 2011 Feb; 186(1):820-6. PubMed ID: 21146292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on Microwave-Assisted Ignition Using a Novel Aero-Engine Combustor.
    Zhang Y; Zhao B; He L; Zeng H; Chang Y
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characterization of an atmospheric pressure DC microplasma jet].
    Zheng PC; Wang HM; Li JQ; Han HY; Xu GH; Shen CY; Chu YN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Feb; 29(2):289-92. PubMed ID: 19445187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution nebulization of aqueous samples into the tubular-electrode torch capacitatively-coupled microwave plasma.
    Patel BM; Deavor JP; Winefordner JD
    Talanta; 1988 Aug; 35(8):641-5. PubMed ID: 18964584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.
    Hong CK; Na YH; Uhm HS; Kim YJ
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2338-41. PubMed ID: 26413663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave plasma conversion of volatile organic compounds.
    Ko Y; Yang G; Chang DP; Kennedy IM
    J Air Waste Manag Assoc; 2003 May; 53(5):580-5. PubMed ID: 12774991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.