BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34997044)

  • 1. Novel ratio-metric features enable the identification of new driver genes across cancer types.
    Sudhakar M; Rengaswamy R; Raman K
    Sci Rep; 2022 Jan; 12(1):5. PubMed ID: 34997044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic selection distinguishes oncogenes and tumor suppressor genes.
    Chandrashekar P; Ahmadinejad N; Wang J; Sekulic A; Egan JB; Asmann YW; Kumar S; Maley C; Liu L
    Bioinformatics; 2020 Mar; 36(6):1712-1717. PubMed ID: 32176769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives.
    Zhu K; Liu Q; Zhou Y; Tao C; Zhao Z; Sun J; Xu H
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S8. PubMed ID: 26099335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes.
    Sudhakar M; Rengaswamy R; Raman K
    Front Genet; 2022; 13():854190. PubMed ID: 35620468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features.
    Lyu J; Li JJ; Su J; Peng F; Chen YE; Ge X; Li W
    Sci Adv; 2020 Nov; 6(46):. PubMed ID: 33177077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.
    Van den Eynden J; Fierro AC; Verbeke LP; Marchal K
    BMC Bioinformatics; 2015 Apr; 16():125. PubMed ID: 25903787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer.
    Shi MJ; Meng XY; Fontugne J; Chen CL; Radvanyi F; Bernard-Pierrot I
    Genome Med; 2020 Sep; 12(1):85. PubMed ID: 32988402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer.
    Liang H; Cheung LW; Li J; Ju Z; Yu S; Stemke-Hale K; Dogruluk T; Lu Y; Liu X; Gu C; Guo W; Scherer SE; Carter H; Westin SN; Dyer MD; Verhaak RG; Zhang F; Karchin R; Liu CG; Lu KH; Broaddus RR; Scott KL; Hennessy BT; Mills GB
    Genome Res; 2012 Nov; 22(11):2120-9. PubMed ID: 23028188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering novel driver mutations from pan-cancer analysis of mutational and gene expression profiles.
    Tegally H; Kensler KH; Mungloo-Dilmohamud Z; Ghoorah AW; Rebbeck TR; Baichoo S
    PLoS One; 2020; 15(11):e0242780. PubMed ID: 33232371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes.
    Bányai L; Trexler M; Kerekes K; Csuka O; Patthy L
    Elife; 2021 Jan; 10():. PubMed ID: 33427197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistically identifying tumor suppressors and oncogenes from pan-cancer genome-sequencing data.
    Kumar RD; Searleman AC; Swamidass SJ; Griffith OL; Bose R
    Bioinformatics; 2015 Nov; 31(22):3561-8. PubMed ID: 26209800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concordance of copy number loss and down-regulation of tumor suppressor genes: a pan-cancer study.
    Zhao M; Zhao Z
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):532. PubMed ID: 27556634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DriverMP enables improved identification of cancer driver genes.
    Liu Y; Han J; Kong T; Xiao N; Mei Q; Liu J
    Gigascience; 2022 Dec; 12():. PubMed ID: 38091511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oncogenes without a Neighboring Tumor-Suppressor Gene Are More Prone to Amplification.
    Wu WK; Li X; Wang X; Dai RZ; Cheng AS; Wang MH; Kwong T; Chow TC; Yu J; Chan MT; Wong SH
    Mol Biol Evol; 2017 Apr; 34(4):903-907. PubMed ID: 28087780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors.
    Newberg JY; Black MA; Jenkins NA; Copeland NG; Mann KM; Mann MB
    Nucleic Acids Res; 2018 Sep; 46(16):e94. PubMed ID: 29846651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.
    Fujimoto A; Okada Y; Boroevich KA; Tsunoda T; Taniguchi H; Nakagawa H
    Sci Rep; 2016 May; 6():26483. PubMed ID: 27225414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.