These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34997074)

  • 1. Atypical dependence of excited exciton energy levels and electron-hole correlation on emission energy in pyramidal InP-based quantum dots.
    Gawełczyk M
    Sci Rep; 2022 Jan; 12(1):164. PubMed ID: 34997074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The excited spin-triplet state of a charged exciton in quantum dots.
    Molas MR; Nicolet AA; Piętka B; Babiński A; Potemski M
    J Phys Condens Matter; 2016 Sep; 28(36):365301. PubMed ID: 27391126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-confinement effects in InAs-InP core-shell nanowires.
    Zanolli Z; Pistol ME; Fröberg LE; Samuelson L
    J Phys Condens Matter; 2007 Jul; 19(29):295219. PubMed ID: 21483071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy.
    Abbarchi M; Mano T; Kuroda T; Ohtake A; Sakoda K
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33578657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton Dynamics in Droplet Epitaxial Quantum Dots Grown on (311)A-Oriented Substrates.
    Abbarchi M; Mano T; Kuroda T; Sakoda K
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Quality of InAs/InP Quantum Dots on Distributed Bragg Reflector Emitting at 3rd Telecom Window Grown by Molecular Beam Epitaxy.
    Smołka T; Posmyk K; Wasiluk M; Wyborski P; Gawełczyk M; Mrowiński P; Mikulicz M; Zielińska A; Reithmaier JP; Musiał A; Benyoucef M
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55-microm photon emitter.
    He L; Gong M; Li CF; Guo GC; Zunger A
    Phys Rev Lett; 2008 Oct; 101(15):157405. PubMed ID: 18999641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiative Auger process in the single-photon limit.
    Löbl MC; Spinnler C; Javadi A; Zhai L; Nguyen GN; Ritzmann J; Midolo L; Lodahl P; Wieck AD; Ludwig A; Warburton RJ
    Nat Nanotechnol; 2020 Jul; 15(7):558-562. PubMed ID: 32541943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.
    Pu C; Qin H; Gao Y; Zhou J; Wang P; Peng X
    J Am Chem Soc; 2017 Mar; 139(9):3302-3311. PubMed ID: 28170239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited-state relaxation in PbSe quantum dots.
    An JM; Califano M; Franceschetti A; Zunger A
    J Chem Phys; 2008 Apr; 128(16):164720. PubMed ID: 18447492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.
    Herbert JM; Zhang X; Morrison AF; Liu J
    Acc Chem Res; 2016 May; 49(5):931-41. PubMed ID: 27100899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of an excitonic ground state in InAs/InSb quantum dots.
    He L; Bester G; Zunger A
    Phys Rev Lett; 2005 Jan; 94(1):016801. PubMed ID: 15698111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures.
    Fillipov S; Puttisong Y; Huang Y; Buyanova IA; Suraprapapich S; Tu CW; Chen WM
    ACS Nano; 2015 Jun; 9(6):5741-9. PubMed ID: 25965972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.
    Chandrasekaran V; Tessier MD; Dupont D; Geiregat P; Hens Z; Brainis E
    Nano Lett; 2017 Oct; 17(10):6104-6109. PubMed ID: 28895398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton fine structure splitting in InP quantum dots in GaInP.
    Ellström C; Seifert W; Pryor C; Samuelson L; Pistol ME
    J Phys Condens Matter; 2007 Jul; 19(29):295211. PubMed ID: 21483063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine Structure of Nearly Isotropic Bright Excitons in InP/ZnSe Colloidal Quantum Dots.
    Brodu A; Chandrasekaran V; Scarpelli L; Buhot J; Masia F; Ballottin MV; Severijnen M; Tessier MD; Dupont D; Rabouw FT; Christianen PCM; de Mello Donega C; Vanmaekelbergh D; Langbein W; Hens Z
    J Phys Chem Lett; 2019 Sep; 10(18):5468-5475. PubMed ID: 31424940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-Dependent Exciton Dynamics in a Single GaAs Quantum Ring and a Quantum Dot.
    Kim H; Kim JS; Song JD
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin memory effect in charged single telecom quantum dots.
    Podemski P; Gawełczyk M; Wyborski P; Salamon H; Burakowski M; Musiał A; Reithmaier JP; Benyoucef M; Sęk G
    Opt Express; 2021 Oct; 29(21):34024-34034. PubMed ID: 34809201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of Broad Emission Spectra in InP Quantum Dots: Contributions from Structural and Electronic Disorder.
    Janke EM; Williams NE; She C; Zherebetskyy D; Hudson MH; Wang L; Gosztola DJ; Schaller RD; Lee B; Sun C; Engel GS; Talapin DV
    J Am Chem Soc; 2018 Nov; 140(46):15791-15803. PubMed ID: 30285448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.