These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34997180)

  • 41. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes.
    Nam YW; Nihira T; Arakawa T; Saito Y; Kitaoka M; Nakai H; Fushinobu S
    J Biol Chem; 2015 Jul; 290(30):18281-92. PubMed ID: 26041776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library.
    Macdonald SS; Patel A; Larmour VLC; Morgan-Lang C; Hallam SJ; Mark BL; Withers SG
    J Biol Chem; 2018 Mar; 293(9):3451-3467. PubMed ID: 29317495
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloning, Expression, Purification, and Characterization of a Novel β-Galactosidase/α-L-Arabinopyranosidase from
    Cui J; Wang Y; Zhou A; He S; Mao Z; Cao T; Wang N; Yuan Y
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005185
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the donor substrate dependence of group-transfer reactions by hydrolytic enzymes: Insight from kinetic analysis of sucrose phosphorylase-catalyzed transglycosylation.
    Klimacek M; Sigg A; Nidetzky B
    Biotechnol Bioeng; 2020 Oct; 117(10):2933-2943. PubMed ID: 32573774
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-Enzyme Phosphorylase Cascade for Integrated Production of Short-Chain Cellodextrins.
    Zhong C; Nidetzky B
    Biotechnol J; 2020 Mar; 15(3):e1900349. PubMed ID: 31677345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two β-galactosidases from the human isolate Bifidobacterium breve DSM 20213: molecular cloning and expression, biochemical characterization and synthesis of galacto-oligosaccharides.
    Arreola SL; Intanon M; Suljic J; Kittl R; Pham NH; Kosma P; Haltrich D; Nguyen TH
    PLoS One; 2014; 9(8):e104056. PubMed ID: 25089712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity.
    Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K
    Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis.
    Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Creating lactose phosphorylase enzymes by directed evolution of cellobiose phosphorylase.
    De Groeve MR; De Baere M; Hoflack L; Desmet T; Vandamme EJ; Soetaert W
    Protein Eng Des Sel; 2009 Jul; 22(7):393-9. PubMed ID: 19487233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.
    Ye Y; Saburi W; Odaka R; Kato K; Sakurai N; Komoda K; Nishimoto M; Kitaoka M; Mori H; Yao M
    FEBS Lett; 2016 Mar; 590(6):828-37. PubMed ID: 26913570
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glucosylglycerate Phosphorylase, an Enzyme with Novel Specificity Involved in Compatible Solute Metabolism.
    Franceus J; Pinel D; Desmet T
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28754708
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and characterization of 1,3-β-D-glucan phosphorylase from Ochromonas danica.
    Yamamoto Y; Kawashima D; Hashizume A; Hisamatsu M; Isono N
    Biosci Biotechnol Biochem; 2013; 77(9):1949-54. PubMed ID: 24018693
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aspergillus nidulans alpha-galactosidase of glycoside hydrolase family 36 catalyses the formation of alpha-galacto-oligosaccharides by transglycosylation.
    Nakai H; Baumann MJ; Petersen BO; Westphal Y; Hachem MA; Dilokpimol A; Duus JØ; Schols HA; Svensson B
    FEBS J; 2010 Sep; 277(17):3538-51. PubMed ID: 20681989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of Fucose-Containing Disaccharides by Glycosylhydrolases from Various Origins.
    Alatorre-Santamaría S; Escamilla-Lozano Y; Guzmán-Rodríguez F; García-Garibay M; Rodríguez-Serrano G; Gómez-Ruiz L; Cruz-Guerrero A
    Appl Biochem Biotechnol; 2019 Jun; 188(2):369-380. PubMed ID: 30467689
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploration of GH94 Sequence Space for Enzyme Discovery Reveals a Novel Glucosylgalactose Phosphorylase Specificity.
    De Doncker M; De Graeve C; Franceus J; Beerens K; Křen V; Pelantová H; Vercauteren R; Desmet T
    Chembiochem; 2021 Dec; 22(23):3319-3325. PubMed ID: 34541742
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 2-O-α-D-glucosylglycerol phosphorylase from Bacillus selenitireducens MLS10 possessing hydrolytic activity on β-D-glucose 1-phosphate.
    Nihira T; Saito Y; Ohtsubo K; Nakai H; Kitaoka M
    PLoS One; 2014; 9(1):e86548. PubMed ID: 24466148
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families.
    Kuhaudomlarp S; Pergolizzi G; Patron NJ; Henrissat B; Field RA
    J Biol Chem; 2019 Apr; 294(16):6483-6493. PubMed ID: 30819804
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel multifunctional GH9 enzyme from Paenibacillus curdlanolyticus B-6 exhibiting endo/exo functions of cellulase, mannanase and xylanase activities.
    Phakeenuya V; Ratanakhanokchai K; Kosugi A; Tachaapaikoon C
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2079-2096. PubMed ID: 31980921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan.
    Imjongjairak S; Jommuengbout P; Karpilanondh P; Katsuzaki H; Sakka M; Kimura T; Pason P; Tachaapaikoon C; Romsaiyud J; Ratanakhanokchai K; Sakka K
    Enzyme Microb Technol; 2015 May; 72():1-9. PubMed ID: 25837501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of a bacterial laminaribiose phosphorylase.
    Kitaoka M; Matsuoka Y; Mori K; Nishimoto M; Hayashi K
    Biosci Biotechnol Biochem; 2012; 76(2):343-8. PubMed ID: 22313784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.