These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34997262)
1. Effects of Drought Stress on the Growth and Heavy Metal Accumulation by Chromolaena odorata Grown in Hydroponic Media. Saeng-Ngam S; Jampasri K Bull Environ Contam Toxicol; 2022 Apr; 108(4):762-767. PubMed ID: 34997262 [TBL] [Abstract][Full Text] [Related]
2. Phytoremediation potential of Jampasri K; Saeng-Ngam S; Larpkern P; Jantasorn A; Kruatrachue M Int J Phytoremediation; 2021; 23(10):1061-1066. PubMed ID: 33501846 [TBL] [Abstract][Full Text] [Related]
3. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700 [TBL] [Abstract][Full Text] [Related]
4. Cadmium and zinc bioaccumulation by McBride MB; Zhou Y Int J Phytoremediation; 2019; 21(12):1215-1224. PubMed ID: 31099251 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of the efficiency of Cd phytoextraction using bacterial endophytes isolated from Chromolaena odorata, a Cd hyperaccumulator. Siripan O; Thamchaipenet A; Surat W Int J Phytoremediation; 2018 Sep; 20(11):1096-1105. PubMed ID: 30156919 [TBL] [Abstract][Full Text] [Related]
7. Bacteria-assisted phytoremediation of fuel oil and lead co-contaminated soil in the salt-stressed condition by Jampasri K; Pokethitiyook P; Poolpak T; Kruatrachue M; Ounjai P; Kumsopa A Int J Phytoremediation; 2020; 22(3):322-333. PubMed ID: 31505941 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus. Jampasri K; Pokethitiyook P; Kruatrachue M; Ounjai P; Kumsopa A Int J Phytoremediation; 2016 Oct; 18(10):994-1001. PubMed ID: 27159380 [TBL] [Abstract][Full Text] [Related]
9. Interactions of cadmium and zinc in high zinc tolerant native species Andropogon gayanus cultivated in hydroponics: growth endpoints, metal bioaccumulation, and ultrastructural analysis. Ribeiro PG; Martins GC; Moreira CG; de Oliveira C; Andrade MLC; Sales TS; Chagas WFT; Labory CRG; de Carvalho TS; Guilherme LRG Environ Sci Pollut Res Int; 2020 Dec; 27(36):45513-45526. PubMed ID: 32794095 [TBL] [Abstract][Full Text] [Related]
10. Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Woraharn S; Meeinkuirt W; Phusantisampan T; Avakul P Environ Sci Pollut Res Int; 2021 Jul; 28(26):35157-35170. PubMed ID: 33666846 [TBL] [Abstract][Full Text] [Related]
12. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions. Atagana HI Int J Phytoremediation; 2011 Aug; 13(7):627-41. PubMed ID: 21972491 [TBL] [Abstract][Full Text] [Related]
13. Understanding the effect of oil on phytoremediation of PCB co-contamination in transformer oil using Anyasi RO; Atagana HI Int J Phytoremediation; 2021; 23(6):597-608. PubMed ID: 33556260 [TBL] [Abstract][Full Text] [Related]
14. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150 [TBL] [Abstract][Full Text] [Related]
16. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials. Shumaker KL; Begonia G Int J Environ Res Public Health; 2005 Aug; 2(2):293-8. PubMed ID: 16705830 [TBL] [Abstract][Full Text] [Related]
17. Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution. Kashem MA; Singh BR; Kubota H; Sugawara R; Kitajima N; Kondo T; Kawai S Environ Sci Pollut Res Int; 2010 Jun; 17(5):1174-6. PubMed ID: 20300871 [TBL] [Abstract][Full Text] [Related]
18. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889 [TBL] [Abstract][Full Text] [Related]
19. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments. Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. Rivelli AR; De Maria S; Puschenreiter M; Gherbin P Int J Phytoremediation; 2012 Apr; 14(4):320-34. PubMed ID: 22567714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]