These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34997262)
21. Structural changes in response to bioaccumulation of iron and mercury in Chromolaena odorata (L.) King & Robins. Swapna KS; Salim N; Chandra R; Puthur JT Environ Monit Assess; 2015 Sep; 187(9):551. PubMed ID: 26239568 [TBL] [Abstract][Full Text] [Related]
22. Effects of cadmium on mercury accumulation and transformation by Arundo donax L. Li X; Zhao L; Teng Y; Luo Y; Zhao Q Environ Sci Pollut Res Int; 2023 May; 30(22):62461-62469. PubMed ID: 36943572 [TBL] [Abstract][Full Text] [Related]
23. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
24. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Abbas T; Rizwan M; Ali S; Adrees M; Mahmood A; Zia-Ur-Rehman M; Ibrahim M; Arshad M; Qayyum MF Ecotoxicol Environ Saf; 2018 Feb; 148():825-833. PubMed ID: 29197797 [TBL] [Abstract][Full Text] [Related]
25. Phytoremediation of Cadmium Contaminated Soil: Impacts on Morphological Traits, Proline Content and Stomata Parameters of Sweet Sorghum Seedlings. Dong X; Chang Y; Zheng R; Wang X; Yan X; Ma XF Bull Environ Contam Toxicol; 2021 Mar; 106(3):528-535. PubMed ID: 33661312 [TBL] [Abstract][Full Text] [Related]
26. Cadmium Accumulation and Tolerance in Seven Ornamental Willow Genotypes. Yang W; Wu F; Ding Z; Zhang X; Zhao F; Wang Y; Yang X Bull Environ Contam Toxicol; 2018 Nov; 101(5):644-650. PubMed ID: 30368573 [TBL] [Abstract][Full Text] [Related]
27. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Benáková M; Ahmadi H; Dučaiová Z; Tylová E; Clemens S; Tůma J Environ Sci Pollut Res Int; 2017 Sep; 24(25):20705-20716. PubMed ID: 28714046 [TBL] [Abstract][Full Text] [Related]
28. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Chen Q; Lu X; Guo X; Pan Y; Yu B; Tang Z; Guo Q Ecotoxicol Environ Saf; 2018 Aug; 157():266-275. PubMed ID: 29626640 [TBL] [Abstract][Full Text] [Related]
29. Heavy metal stress in alders: Tolerance and vulnerability of the actinorhizal symbiosis. Bélanger PA; Bellenger JP; Roy S Chemosphere; 2015 Nov; 138():300-8. PubMed ID: 26091871 [TBL] [Abstract][Full Text] [Related]
30. Effects of drought on cadmium accumulation in peanuts grown in a contaminated calcareous soil. Xia S; Wang X; Su G; Shi G Environ Sci Pollut Res Int; 2015 Dec; 22(23):18707-17. PubMed ID: 26194243 [TBL] [Abstract][Full Text] [Related]
31. The phytoremediation effect of Medicago scutellata (L.) Mill. on soils under Cd-water stress: a good choice for contaminated dry lands. Parsamanesh S; Sadeghi H Environ Sci Pollut Res Int; 2019 Oct; 26(28):29065-29073. PubMed ID: 31392616 [TBL] [Abstract][Full Text] [Related]
32. Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of Cd and Zn based on the plant physiological mechanisms. Du J; Guo Z; Li R; Ali A; Guo D; Lahori AH; Wang P; Liu X; Wang X; Zhang Z Environ Pollut; 2020 Jun; 261():114213. PubMed ID: 32408418 [TBL] [Abstract][Full Text] [Related]
33. Portulaca oleracea L. for phytoremediation and biomonitoring in metal-contaminated environments. Subpiramaniyam S Chemosphere; 2021 Oct; 280():130784. PubMed ID: 33971418 [TBL] [Abstract][Full Text] [Related]
34. Heavy metal accumulation and tolerance of energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) grown in hydroponic culture. Sipos G; Solti A; Czech V; Vashegyi I; Tóth B; Cseh E; Fodor F Plant Physiol Biochem; 2013 Jul; 68():96-103. PubMed ID: 23669138 [TBL] [Abstract][Full Text] [Related]
35. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
36. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Cojocaru P; Gusiatin ZM; Cretescu I Environ Sci Pollut Res Int; 2016 Jun; 23(11):10693-10701. PubMed ID: 26884243 [TBL] [Abstract][Full Text] [Related]
37. Cd uptake and translocation by camelthorn (Alhagi maurorum Medik): a promising approach for phytoremediation of Cd-contaminated soils. Alotaibi MO; Ghoneim AM; Eissa MA Environ Sci Pollut Res Int; 2023 May; 30(24):65892-65899. PubMed ID: 37093375 [TBL] [Abstract][Full Text] [Related]
38. An investigation of zinc isotope fractionation in cacao (Theobroma cacao L.) and comparison of zinc and cadmium isotope compositions in hydroponic plant systems under high cadmium stress. Barati E; Moore RET; Ullah I; Kreissig K; Coles BJ; Dunwell JM; Rehkämper M Sci Rep; 2023 Mar; 13(1):4682. PubMed ID: 36949227 [TBL] [Abstract][Full Text] [Related]
39. Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Bauddh K; Singh RP Ecotoxicol Environ Saf; 2012 Nov; 85():13-22. PubMed ID: 22959315 [TBL] [Abstract][Full Text] [Related]
40. Effect of using Celosia argentea grown from seeds treated with a magnetic field to conduct Cd phytoremediation in drought stress conditions. Yang P; Gan T; Pi W; Cao M; Chen D; Luo J Chemosphere; 2021 Oct; 280():130724. PubMed ID: 34162085 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]