These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34997490)

  • 21. Sustainable use of tannery sludge in brick manufacturing in Bangladesh.
    Juel MAI; Mizan A; Ahmed T
    Waste Manag; 2017 Feb; 60():259-269. PubMed ID: 28081994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag.
    Pantazopoulou E; Zouboulis A
    J Environ Manage; 2018 Jun; 216():257-262. PubMed ID: 28372833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A study of heavy metals and their fate in the composting of tannery sludge.
    Haroun M; Idris A; Syed Omar SR
    Waste Manag; 2007; 27(11):1541-50. PubMed ID: 17113767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detoxification of chromium-rich tannery industry sludge by Eudrillus eugeniae: Insight on compost quality fortification and microbial enrichment.
    Goswami L; Mukhopadhyay R; Bhattacharya SS; Das P; Goswami R
    Bioresour Technol; 2018 Oct; 266():472-481. PubMed ID: 29990763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulating the migration and species distribution of Cr and inorganic ions from tanneries in the vadose zone.
    Guo SS; Xu YH; Yang JY
    J Environ Manage; 2021 Jun; 288():112441. PubMed ID: 33823454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic immobilization of chromium in tannery sludge by ZnO and TiO
    Zhao R; Guo Y; Huang X; Qian J; Wu Y; Li Z; Lu S
    J Hazard Mater; 2022 Feb; 424(Pt A):127290. PubMed ID: 34600384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromium recovery from tannery sludge and its ash, based on hydrometallurgical methods.
    Pantazopoulou E; Zouboulis A
    Waste Manag Res; 2020 Jan; 38(1):19-26. PubMed ID: 31405339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.
    Zeng J; Gou M; Tang YQ; Li GY; Sun ZY; Kida K
    Bioresour Technol; 2016 Oct; 218():859-66. PubMed ID: 27434303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of chromium and sodium on development, physiology, and anatomy of Conilon coffee seedlings.
    Martineli L; da Silva Berilli S; Amaro de Sales R; da Cunha M; Monaco PAVL; de Jesus Freitas S; Martineli M; Gabriel Berilli APC; Pireda S; da Silva Oliveira D; Louzada Pereira L
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44986-44997. PubMed ID: 35142998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial distribution and morphological transformation of chromium with coexisting substances in tannery landfill.
    Guo SS; Tian YQ; Wu H; Jin XD; Gan LZ; Li Y; Yang JY
    Chemosphere; 2021 Dec; 285():131503. PubMed ID: 34265720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of incineration temperature on chromium speciation in real chromium-rich tannery sludge under air atmosphere.
    Yang Y; Ma H; Chen X; Zhu C; Li X
    Environ Res; 2020 Apr; 183():109159. PubMed ID: 32028182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mobility and storage sinks for chromium and other metals in soils impacted by leather tannery wastes.
    Chen H; Arocena JM; Li J; Thring RW; Zhou J
    J Environ Monit; 2012 Dec; 14(12):3240-8. PubMed ID: 23149884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching.
    Zheng G; Zhou L
    Water Res; 2011 Oct; 45(16):5295-301. PubMed ID: 21864881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Utilization of phosphogypsum in tannery sludge stabilization and evaluation of the radiological impact.
    Pantazopoulou E; Zebiliadou O; Noli F; Mitrakas M; Samaras P; Zouboulis A
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):352-7. PubMed ID: 25432294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
    Dong H; Jiang X; Lv G; Chi Y; Yan J
    Waste Manag; 2015 Dec; 46():227-33. PubMed ID: 26278370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidation of Cr(III) in tannery sludge to Cr(VI): field observations and theoretical assessment.
    Apte AD; Verma S; Tare V; Bose P
    J Hazard Mater; 2005 May; 121(1-3):215-22. PubMed ID: 15885424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Migration and fate of characteristic pollutants migration from an abandoned tannery in soil and groundwater by experiment and numerical simulation.
    Guo SS; Wu H; Tian YQ; Chen HX; Wang Y; Yang JY
    Chemosphere; 2021 May; 271():129552. PubMed ID: 33453488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supercritical water oxidation of tannery sludge: stabilization of chromium and destruction of organics.
    Zou D; Chi Y; Dong J; Fu C; Wang F; Ni M
    Chemosphere; 2013 Oct; 93(7):1413-8. PubMed ID: 23916746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromium Contamination from Tanning Industries and Phytoremediation Potential of Native Plants: A Study of Savar Tannery Industrial Estate in Dhaka, Bangladesh.
    Hasan SMM; Akber MA; Bahar MM; Islam MA; Akbor MA; Siddique MAB; Islam MA
    Bull Environ Contam Toxicol; 2021 Jun; 106(6):1024-1032. PubMed ID: 33991212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Less abundant bacterial groups are more affected than the most abundant groups in composted tannery sludge-treated soil.
    Miranda ARL; Antunes JEL; de Araujo FF; Melo VMM; Bezerra WM; Van den Brink PJ; Araujo ASF
    Sci Rep; 2018 Aug; 8(1):11755. PubMed ID: 30082922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.