BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34997517)

  • 1. Hydroxylamine promoted Fe(III) reduction in H
    Zheng Y; Xie W; Yuan S
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):30285-30296. PubMed ID: 34997517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of phenol using Fe(II)-activated CaO
    Masud MAA; Kim DG; Shin WS
    Environ Res; 2022 Nov; 214(Pt 3):113882. PubMed ID: 35931187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of H
    Dong C; Ji J; Shen B; Xing M; Zhang J
    Environ Sci Technol; 2018 Oct; 52(19):11297-11308. PubMed ID: 30180549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep investigation on different effects of Cl
    Li ZY; Chen CM; Gu HT; Sun ZQ; Li XY; Chen SX; Ma J
    Water Res; 2022 Jun; 216():118315. PubMed ID: 35378450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxylamine promoted hydroxyl radical production and organic contaminants degradation in oxygenation of pyrite.
    Huang M; Fang G; Chen N; Zhou D
    J Hazard Mater; 2022 May; 429():128380. PubMed ID: 35121297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective degradation of phenol via catalytic wet peroxide oxidation over N, S, and Fe-tridoped activated carbon.
    Yang G; Mo S; Xing B; Dong J; Song X; Liu X; Yuan J
    Environ Pollut; 2020 Mar; 258():113687. PubMed ID: 31812525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic study for phenol degradation by ZVI-assisted Fenton reaction and related iron corrosion investigated by X-ray absorption spectroscopy.
    Yoon IH; Yoo G; Hong HJ; Kim J; Kim MG; Choi WK; Yang JW
    Chemosphere; 2016 Feb; 145():409-15. PubMed ID: 26692518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrite/H
    He GJ; Zhong DJ; Xu YL; Liu P; Zeng SJ; Wang S
    Water Sci Technol; 2021 May; 83(9):2218-2231. PubMed ID: 33989188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic models for hydroxyl radical production and contaminant removal during soil/sediment oxygenation.
    Zhang P; Liu J; Yu H; Cheng D; Liu H; Yuan S
    Water Res; 2023 Jul; 240():120071. PubMed ID: 37210971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxylamine enhanced Fe(II)-activated peracetic acid process for diclofenac degradation: Efficiency, mechanism and effects of various parameters.
    Lin J; Zou J; Cai H; Huang Y; Li J; Xiao J; Yuan B; Ma J
    Water Res; 2021 Dec; 207():117796. PubMed ID: 34736001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the Influence of Citrate/Fe(II) Molar Ratio on Hydroxyl Radical Production and Pollutant Degradation during Fe(II)-Catalyzed O
    Hu B; Zhang P; Liu H; Yuan S
    Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36232278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the degradation of micro-pollutants in the hydroxylamine enhanced Fe(II)/peracetic acid process: Contribution of reactive species and effects of pH.
    Cheng Y; Wang Z; Wang J; Cao L; Chen Z; Chen Y; Liu Z; Xie P; Ma J
    J Hazard Mater; 2023 Jan; 441():129885. PubMed ID: 36115095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of chromium(Ⅲ): A potential risk of using chemical oxidation processes for the remediation of 2-chlorophenol contaminated soils.
    Yu J; Yu J; Deng S; Huang Z; Wang Z; Zhu W; Zhou X; Liu L; Wu D; Zhang H
    J Environ Manage; 2024 May; 359():120973. PubMed ID: 38703644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overcoming Acidic H
    Zhang T; Wen Y; Pan Z; Kuwahara Y; Mori K; Yamashita H; Zhao Y; Qian X
    Environ Sci Technol; 2022 Feb; 56(4):2617-2625. PubMed ID: 35098712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylamine driven advanced oxidation processes for water treatment: A review.
    Duan J; Pang SY; Wang Z; Zhou Y; Gao Y; Li J; Guo Q; Jiang J
    Chemosphere; 2021 Jan; 262():128390. PubMed ID: 33182154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H
    Cheng F; Zhou P; Liu Y; Huo X; Zhang J; Yuan Y; Zhang H; Lai B; Zhang Y
    Sci Total Environ; 2021 Nov; 797():149097. PubMed ID: 34298366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of interfacial electron transfer reactions on sulfamethoxazole degradation by reduced nontronite activating H
    Cui HJ; Ning Y; Wu C; Peng W; Cheng D; Yin L; Zhou W; Liao W
    J Environ Sci (China); 2023 Feb; 124():688-698. PubMed ID: 36182174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance.
    Rusevova K; Kopinke FD; Georgi A
    J Hazard Mater; 2012 Nov; 241-242():433-40. PubMed ID: 23098995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.