BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34997517)

  • 21. Contaminant Degradation by •OH during Sediment Oxygenation: Dependence on Fe(II) Species.
    Xie W; Yuan S; Tong M; Ma S; Liao W; Zhang N; Chen C
    Environ Sci Technol; 2020 Mar; 54(5):2975-2984. PubMed ID: 32023045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unraveling the interaction of hydroxylamine and Fe(III) in Fe(II)/Persulfate system: A kinetic and simulating study.
    Li ZY; Wang L; Liu YL; Zhao Q; Ma J
    Water Res; 2020 Jan; 168():115093. PubMed ID: 31606557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dramatically enhanced phenol degradation upon FeS oxygenation by low-molecular-weight organic acids.
    Cheng D; Ding H; Tan Y; Yang D; Pan Y; Liao W; He F
    J Hazard Mater; 2023 Oct; 459():132260. PubMed ID: 37586237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic Production of Hydroxyl Radicals during the Flooding-Drainage Process of Paddy Soil: An In Situ Column Study.
    Huang D; Chen N; Zhu C; Sun H; Fang G; Zhou D
    Environ Sci Technol; 2023 Oct; 57(43):16340-16347. PubMed ID: 37856081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steady release-activation of hydrogen peroxide and molecular oxygen towards the removal of ciprofloxacin in the FeOCl/CaO
    Wang L; Yang H; Yao J; Wu Q; He Z; Yang Y
    Chemosphere; 2022 Dec; 308(Pt 1):136156. PubMed ID: 36029866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the degradation process of phenol during in-situ thermal desorption: The overlooked oxidation of hydroxyl radicals from oxygenation of reduced Fe-bearing clay minerals.
    Zhang W; Li X; Shen J; Sun Z; Zhou X; Li F; Ma F; Gu Q
    J Hazard Mater; 2023 Feb; 444(Pt A):130401. PubMed ID: 36403451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine.
    Zou J; Ma J; Chen L; Li X; Guan Y; Xie P; Pan C
    Environ Sci Technol; 2013 Oct; 47(20):11685-91. PubMed ID: 24033112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Fenton-like system of biochar loading Fe-Al layered double hydroxides (FeAl-LDH@BC) / H
    Xiaoliang Fan ; Cao Q; Meng F; Song B; Bai Z; Zhao Y; Chen D; Zhou Y; Song M
    Chemosphere; 2021 Mar; 266():128992. PubMed ID: 33303228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AOX formation and elimination in the oxidative treatment of synthetic wastewaters in a UV-free surface reactor.
    Baycan N; Sengul F; Thomanetz E
    Environ Sci Pollut Res Int; 2005; 12(3):153-8. PubMed ID: 15986999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Weak magnetic field and coexisting ions accelerate phenol removal by ZVI/H
    Liang L; Bai C; Zhang Y; Komarneni S; Ma J
    Chemosphere; 2024 Jul; 359():142260. PubMed ID: 38735488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.
    Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P
    Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cu(II)-enhanced degradation of acid orange 7 by Fe(II)-activated persulfate with hydroxylamine over a wide pH range.
    Liu X; Yuan B; Zou J; Wu L; Dai L; Ma H; Li K; Ma J
    Chemosphere; 2020 Jan; 238():124533. PubMed ID: 31466004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of interaction between ascorbic acid and soil iron-containing minerals for peroxydisulfate activation and organophosphorus flame retardant degradation.
    Dong X; Dai M; Yang T; Chen L; Yu H; Chen L; Zhao R; Jiang C
    Environ Res; 2024 Mar; 244():117883. PubMed ID: 38072104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CaO
    Pan Y; Su H; Zhu Y; Vafaei Molamahmood H; Long M
    Water Res; 2018 Nov; 145():731-740. PubMed ID: 30216867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous Fe(II)-dosing scheme for persulfate activation: Performance enhancement mechanisms in a slurry phase reactor.
    Yoon SE; Kim C; Hwang I
    Chemosphere; 2022 Dec; 308(Pt 3):136401. PubMed ID: 36108762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of oxidation of chlorobenzenes and phenyl-ureas by Fe(II)/H2O2 and Fe(III)/H2O2. Evidence of reduction and oxidation reactions of intermediates by Fe(II) or Fe(III).
    Gallard H; De Laat J
    Chemosphere; 2001 Feb; 42(4):405-13. PubMed ID: 11100792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron(II) sulfate crystals assisted mechanochemical modification of microscale zero-valent aluminum (mZVAl) for oxidative degradation of phenol in water.
    Wu S; Yang S; Li Q; Wang M; Xue Y; Zhao D
    Chemosphere; 2021 Jul; 274():129767. PubMed ID: 33540316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced nontronite-activated H
    Liu X; Yuan S; Zhang P; Zhu J; Tong M
    J Hazard Mater; 2020 Mar; 386():121945. PubMed ID: 31893557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of Fenton's reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium.
    Kremer SM; Wood PM
    Eur J Biochem; 1992 Sep; 208(3):807-14. PubMed ID: 1396686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.