These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34997586)
21. Lactobacillus sakei K040706 evokes immunostimulatory effects on macrophages through TLR 2-mediated activation. Jung JY; Shin JS; Lee SG; Rhee YK; Cho CW; Hong HD; Lee KT Int Immunopharmacol; 2015 Sep; 28(1):88-96. PubMed ID: 26049027 [TBL] [Abstract][Full Text] [Related]
22. Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto). Hosoi T; Hirose R; Saegusa S; Ametani A; Kiuchi K; Kaminogawa S Int J Food Microbiol; 2003 May; 82(3):255-64. PubMed ID: 12593928 [TBL] [Abstract][Full Text] [Related]
23. Immunostimulatory activity of polysaccharides from Cheonggukjang. Lee SJ; Rim HK; Jung JY; An HJ; Shin JS; Cho CW; Rhee YK; Hong HD; Lee KT Food Chem Toxicol; 2013 Sep; 59():476-84. PubMed ID: 23831309 [TBL] [Abstract][Full Text] [Related]
24. The TLR2 ligand FSL-1 and the TLR5 ligand Flagellin mediate pro-inflammatory and pro-labour response via MyD88/TRAF6/NF-κB-dependent signalling. Lim R; Barker G; Lappas M Am J Reprod Immunol; 2014 May; 71(5):401-17. PubMed ID: 24635133 [TBL] [Abstract][Full Text] [Related]
25. Asaronic Acid Attenuates Macrophage Activation toward M1 Phenotype through Inhibition of NF-κB Pathway and JAK-STAT Signaling in Glucose-Loaded Murine Macrophages. Oh H; Park SH; Kang MK; Kim YH; Lee EJ; Kim DY; Kim SI; Oh S; Lim SS; Kang YH J Agric Food Chem; 2019 Sep; 67(36):10069-10078. PubMed ID: 31422663 [TBL] [Abstract][Full Text] [Related]
26. Interleukin 26 Skews Macrophage Polarization Towards M1 Phenotype by Activating cJUN and the NF-κB Pathway. Lin YH; Wang YH; Peng YJ; Liu FC; Lin GJ; Huang SH; Sytwu HK; Cheng CP Cells; 2020 Apr; 9(4):. PubMed ID: 32290250 [TBL] [Abstract][Full Text] [Related]
27. PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2. Xu Y; Yang E; Huang Q; Ni W; Kong C; Liu G; Li G; Su H; Wang H J Mol Med (Berl); 2015 Jun; 93(6):645-62. PubMed ID: 25586105 [TBL] [Abstract][Full Text] [Related]
28. Lactobacillus rhamnosus GG promotes M1 polarization in murine bone marrow-derived macrophages by activating TLR2/MyD88/MAPK signaling pathway. Wang B; Wu Y; Liu R; Xu H; Mei X; Shang Q; Liu S; Yu D; Li W Anim Sci J; 2020; 91(1):e13439. PubMed ID: 32779289 [TBL] [Abstract][Full Text] [Related]
29. MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. Verstak B; Nagpal K; Bottomley SP; Golenbock DT; Hertzog PJ; Mansell A J Biol Chem; 2009 Sep; 284(36):24192-203. PubMed ID: 19592497 [TBL] [Abstract][Full Text] [Related]
30. The scaffold MyD88 acts to couple protein kinase Cepsilon to Toll-like receptors. Faisal A; Saurin A; Gregory B; Foxwell B; Parker PJ J Biol Chem; 2008 Jul; 283(27):18591-600. PubMed ID: 18458086 [TBL] [Abstract][Full Text] [Related]
31. MiR-144-5p limits experimental abdominal aortic aneurysm formation by mitigating M1 macrophage-associated inflammation: Suppression of TLR2 and OLR1. Shi X; Ma W; Li Y; Wang H; Pan S; Tian Y; Xu C; Li L J Mol Cell Cardiol; 2020 Jun; 143():1-14. PubMed ID: 32278833 [TBL] [Abstract][Full Text] [Related]
32. Mycobacterium tuberculosis virulence protein ESAT-6 influences M1/M2 polarization and macrophage apoptosis to regulate tuberculosis progression. Sun F; Li J; Cao L; Yan C Genes Genomics; 2024 Jan; 46(1):37-47. PubMed ID: 37971619 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of probiotic and prebiotic-like effects of Bacillus subtilis BN on growth of lactobacilli. Horie M; Koike T; Sugino S; Umeno A; Yoshida Y J Gen Appl Microbiol; 2018 Mar; 64(1):26-33. PubMed ID: 29225285 [TBL] [Abstract][Full Text] [Related]
34. In vitro evaluation of inhibitory effect of nuclear factor-kappaB activity by small interfering RNA on pro-tumor characteristics of M2-like macrophages. Kono Y; Kawakami S; Higuchi Y; Yamashita F; Hashida M Biol Pharm Bull; 2014; 37(1):137-44. PubMed ID: 24141263 [TBL] [Abstract][Full Text] [Related]
35. Toll-like receptor 4 and Toll-IL-1 receptor domain-containing adapter protein (TIRAP)/myeloid differentiation protein 88 adapter-like (Mal) contribute to maximal IL-6 expression in macrophages. Schilling D; Thomas K; Nixdorff K; Vogel SN; Fenton MJ J Immunol; 2002 Nov; 169(10):5874-80. PubMed ID: 12421970 [TBL] [Abstract][Full Text] [Related]
36. Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. Feng CG; Scanga CA; Collazo-Custodio CM; Cheever AW; Hieny S; Caspar P; Sher A J Immunol; 2003 Nov; 171(9):4758-64. PubMed ID: 14568952 [TBL] [Abstract][Full Text] [Related]
37. Antipruritic effects of electroacupuncture on morphine-induced pruritus model mice through the TLR2/4-MyD88-NF-κB pathway. Ye YS; Pan AZ; Zhen Y; Kang MR; Zhang B; Yi WM Neuroreport; 2019 Mar; 30(5):331-337. PubMed ID: 30822282 [TBL] [Abstract][Full Text] [Related]
38. The combination of maltose-binding protein and BCG-induced Th1 activation is involved in TLR2/9-mediated upregulation of MyD88-TRAF6 and TLR4-mediated downregulation of TRIF-TRAF3. Liu G; Zhai X; Zhou H; Yang X; Zhang N; Tai G; Ni W Cell Immunol; 2018 Mar; 325():56-63. PubMed ID: 29452695 [TBL] [Abstract][Full Text] [Related]