These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34997836)

  • 1. Comparison of numerical methods for cerebrospinal fluid representation and fluid-structure interaction during transverse impact of a finite element spinal cord model.
    Rycman A; McLachlin S; Cronin DS
    Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3570. PubMed ID: 34997836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hyper-Viscoelastic Continuum-Level Finite Element Model of the Spinal Cord Assessed for Transverse Indentation and Impact Loading.
    Rycman A; McLachlin S; Cronin DS
    Front Bioeng Biotechnol; 2021; 9():693120. PubMed ID: 34458242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: a finite element study.
    Khuyagbaatar B; Kim K; Hyuk Kim Y
    J Biomech; 2014 Aug; 47(11):2820-5. PubMed ID: 24891036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of a fixed-grid and arbitrary Lagrangian-Eulerian methods on modelling fluid-structure interaction of the aortic valve.
    Joda A; Jin Z; Summers J; Korossis S
    Proc Inst Mech Eng H; 2019 May; 233(5):544-553. PubMed ID: 30922162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of fluid-structure interaction in spinal trauma models.
    Persson C; Summers J; Hall RM
    J Neurotrauma; 2011 Jan; 28(1):113-25. PubMed ID: 21047151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smoothed particle hydrodynamics implementation to enhance vertebral fracture finite element model in a cervical spine segment under compression.
    Ngan S; Rampersadh C; Rycman A; Cronin DS
    J Mech Behav Biomed Mater; 2024 Mar; 151():106412. PubMed ID: 38262183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation by fluid/structure-interaction spinal-cord simulation of the effects of subarachnoid-space stenosis on an adjacent syrinx.
    Bertram CD
    J Biomech Eng; 2010 Jun; 132(6):061009. PubMed ID: 20887034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord.
    Polak-Kraśna K; Robak-Nawrocka S; Szotek S; Czyż M; Gheek D; Pezowicz C
    J Mech Behav Biomed Mater; 2019 Mar; 91():10-17. PubMed ID: 30529981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biomechanical behaviors of cervical spinal cord injury related to various bone fragment impact velocities: a finite element study].
    Duan S; Zhu ZQ; Wang KF; Liu CJ; Xu S; Xia WW; Liu HY
    Zhonghua Yi Xue Za Zhi; 2018 Mar; 98(11):837-841. PubMed ID: 29609266
    [No Abstract]   [Full Text] [Related]  

  • 10. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of cerebrospinal fluid on the biomechanics of spinal cord: an ex vivo bovine model using bovine and physical surrogate spinal cord.
    Jones CF; Kroeker SG; Cripton PA; Hall RM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):E580-8. PubMed ID: 18670325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelasticity of spinal cord and meningeal tissues.
    Ramo NL; Troyer KL; Puttlitz CM
    Acta Biomater; 2018 Jul; 75():253-262. PubMed ID: 29852238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Models of Spinal Cord Trauma: The Effect of Cerebrospinal Fluid Pressure and Epidural Fat on the Results.
    Arhiptsov K; Marom G
    J Neurotrauma; 2021 Aug; 38(15):2176-2185. PubMed ID: 33971729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and numerical study on micro-blasting process of 3A dental implant titanium alloy: A comparison between finite element method and smoothed particle hydrodynamics.
    Khoddami A; Nasiri MA; Mohammadi B
    J Mech Behav Biomed Mater; 2022 Aug; 132():105269. PubMed ID: 35636119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Poroelastic Fluid/Structure-Interaction Model of Cerebrospinal Fluid Dynamics in the Cord With Syringomyelia and Adjacent Subarachnoid-Space Stenosis.
    Bertram CD; Heil M
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27617710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.
    Garnotel S; Salmon S; Balédent O
    Acta Neurochir Suppl; 2018; 126():255-259. PubMed ID: 29492571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of Brain Response to Noncontact Impacts Using Coupled Eulerian-Lagrangian Method.
    Na M; Beavers TJ; Chandra A; Bentil SA
    J Biomech Eng; 2020 May; 142(5):. PubMed ID: 31574143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A one-dimensional model of the spinal cerebrospinal-fluid compartment.
    Cirovic S; Kim M
    J Biomech Eng; 2012 Feb; 134(2):021005. PubMed ID: 22482672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of spinal cord injury in the rat.
    Maikos JT; Qian Z; Metaxas D; Shreiber DI
    J Neurotrauma; 2008 Jul; 25(7):795-816. PubMed ID: 18627257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.