BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 34998123)

  • 1. Sculpting therapeutic monoclonal antibody N-glycans using endoglycosidases.
    Trastoy B; Du JJ; García-Alija M; Li C; Klontz EH; Wang LX; Sundberg EJ; Guerin ME
    Curr Opin Struct Biol; 2022 Feb; 72():248-259. PubMed ID: 34998123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody.
    Giddens JP; Lomino JV; DiLillo DJ; Ravetch JV; Wang LX
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):12023-12027. PubMed ID: 30397147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions.
    Huang W; Giddens J; Fan SQ; Toonstra C; Wang LX
    J Am Chem Soc; 2012 Jul; 134(29):12308-18. PubMed ID: 22747414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method to Detect the Binding of Hyper-Glycosylated Fragment Crystallizable (Fc) Region of Human IgG1 to Glycan Receptors.
    Blundell P; Pleass R
    Methods Mol Biol; 2019; 1904():417-421. PubMed ID: 30539483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms.
    Wada R; Matsui M; Kawasaki N
    MAbs; 2019; 11(2):350-372. PubMed ID: 30466347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of antibody effector functions through IgG Fc N-glycosylation.
    Quast I; Peschke B; Lünemann JD
    Cell Mol Life Sci; 2017 Mar; 74(5):837-847. PubMed ID: 27639381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the mechanisms and specificities of IgG-active endoglycosidases.
    Du JJ; Klontz EH; Guerin ME; Trastoy B; Sundberg EJ
    Glycobiology; 2020 Mar; 30(4):268-279. PubMed ID: 31172182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restricted processing of CD16a/Fc γ receptor IIIa
    Patel KR; Roberts JT; Subedi GP; Barb AW
    J Biol Chem; 2018 Mar; 293(10):3477-3489. PubMed ID: 29330305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies.
    Le NP; Bowden TA; Struwe WB; Crispin M
    Biochim Biophys Acta; 2016 Aug; 1860(8):1655-68. PubMed ID: 27105835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD16a with oligomannose-type
    Subedi GP; Barb AW
    J Biol Chem; 2018 Oct; 293(43):16842-16850. PubMed ID: 30213862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallizable Fragment Glycoengineering for Therapeutic Antibodies Development.
    Li W; Zhu Z; Chen W; Feng Y; Dimitrov DS
    Front Immunol; 2017; 8():1554. PubMed ID: 29181010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Role of Carbohydrate Residues in Human Immunoglobulin G and Therapeutic Monoclonal Antibodies.
    Dorokhov YL; Sheshukova EV; Kosobokova EN; Shindyapina AV; Kosorukov VS; Komarova TV
    Biochemistry (Mosc); 2016 Aug; 81(8):835-57. PubMed ID: 27677552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells.
    Hills AE; Patel A; Boyd P; James DC
    Biotechnol Bioeng; 2001 Oct; 75(2):239-51. PubMed ID: 11536148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycoform-resolved FcɣRIIIa affinity chromatography-mass spectrometry.
    Lippold S; Nicolardi S; Domínguez-Vega E; Heidenreich AK; Vidarsson G; Reusch D; Haberger M; Wuhrer M; Falck D
    MAbs; 2019 Oct; 11(7):1191-1196. PubMed ID: 31276431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.
    Kurogochi M; Mori M; Osumi K; Tojino M; Sugawara S; Takashima S; Hirose Y; Tsukimura W; Mizuno M; Amano J; Matsuda A; Tomita M; Takayanagi A; Shoda S; Shirai T
    PLoS One; 2015; 10(7):e0132848. PubMed ID: 26200113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins.
    Ahmed AA; Giddens J; Pincetic A; Lomino JV; Ravetch JV; Wang LX; Bjorkman PJ
    J Mol Biol; 2014 Sep; 426(18):3166-3179. PubMed ID: 25036289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro.
    Hodoniczky J; Zheng YZ; James DC
    Biotechnol Prog; 2005; 21(6):1644-52. PubMed ID: 16321047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The IgG-specific endoglycosidases EndoS and EndoS2 are distinguished by conformation and antibody recognition.
    Sudol ASL; Crispin M; Tews I
    J Biol Chem; 2024 May; 300(5):107245. PubMed ID: 38569940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing Fc glycan heterogeneity of therapeutic recombinant monoclonal antibodies using NP-HPLC.
    Raju TS
    Methods Mol Biol; 2013; 988():169-80. PubMed ID: 23475719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans.
    Goetze AM; Liu YD; Zhang Z; Shah B; Lee E; Bondarenko PV; Flynn GC
    Glycobiology; 2011 Jul; 21(7):949-59. PubMed ID: 21421994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.