These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34998162)

  • 1. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies.
    Warner RD; Wheeler TL; Ha M; Li X; Bekhit AE; Morton J; Vaskoska R; Dunshea FR; Liu R; Purslow P; Zhang W
    Meat Sci; 2022 Mar; 185():108657. PubMed ID: 34998162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomarkers of meat tenderness: present knowledge and perspectives in regards to our current understanding of the mechanisms involved.
    Ouali A; Gagaoua M; Boudida Y; Becila S; Boudjellal A; Herrera-Mendez CH; Sentandreu MA
    Meat Sci; 2013 Dec; 95(4):854-70. PubMed ID: 23790743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemistry of postmortem muscle - lessons on mechanisms of meat tenderization.
    Huff Lonergan E; Zhang W; Lonergan SM
    Meat Sci; 2010 Sep; 86(1):184-95. PubMed ID: 20566247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of oxidative stress on AIF-mediated apoptosis and bovine muscle tenderness during postmortem aging.
    Chen C; Zhang J; Guo Z; Shi X; Zhang Y; Zhang L; Yu Q; Han L
    J Food Sci; 2020 Jan; 85(1):77-85. PubMed ID: 31816098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system.
    Koohmaraie M; Geesink GH
    Meat Sci; 2006 Sep; 74(1):34-43. PubMed ID: 22062714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis reveals that lysine acetylation mediates the effect of antemortem stress on postmortem meat quality development.
    Zhou B; Shen Z; Liu Y; Wang C; Shen QW
    Food Chem; 2019 Sep; 293():396-407. PubMed ID: 31151627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small heat shock proteins and their role in meat tenderness: a review.
    Lomiwes D; Farouk MM; Wiklund E; Young OA
    Meat Sci; 2014 Jan; 96(1):26-40. PubMed ID: 23896134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ASAS Centennial paper: a century of pioneers and progress in meat science in the United States leads to new frontiers.
    Beermann DH
    J Anim Sci; 2009 Mar; 87(3):1192-8. PubMed ID: 19066248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Muscle to meat" molecular events and technological transformations: the proteomics insight.
    Paredi G; Raboni S; Bendixen E; de Almeida AM; Mozzarelli A
    J Proteomics; 2012 Jul; 75(14):4275-89. PubMed ID: 22543183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of muscle proteinases to meat tenderization.
    Jiang ST
    Proc Natl Sci Counc Repub China B; 1998 Jul; 22(3):97-107. PubMed ID: 9779598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of meat quality: tenderness.
    Maltin C; Balcerzak D; Tilley R; Delday M
    Proc Nutr Soc; 2003 May; 62(2):337-47. PubMed ID: 14506881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics discovery of protein biomarkers linked to yak meat tenderness as determined by label-free mass spectrometry.
    Li S; Li C
    Anim Sci J; 2021; 92(1):e13669. PubMed ID: 34882917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative analysis of phosphoproteome in ovine muscle at early postmortem in relationship to tenderness.
    Li X; Chen L; He F; Li M; Shen Q; Zhang D
    J Sci Food Agric; 2017 Oct; 97(13):4571-4579. PubMed ID: 28345137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating identification and targeted proteomics to discover the potential indicators of postmortem lamb meat quality.
    Huang C; Blecker C; Chen L; Xiang C; Zheng X; Wang Z; Zhang D
    Meat Sci; 2023 May; 199():109126. PubMed ID: 36736126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of intramuscular connective tissue and its structural components on meat tenderness-revisited: a review.
    Roy BC; Bruce HL
    Crit Rev Food Sci Nutr; 2023 May; ():1-31. PubMed ID: 37194652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat.
    Jiang S; Liu Y; Shen Z; Zhou B; Shen QW
    J Proteomics; 2019 Aug; 205():103412. PubMed ID: 31176012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic responses to oxidative damage in meat from ducks exposed to heat stress.
    He J; Xia C; He Y; Pan D; Cao J; Sun Y; Zeng X
    Food Chem; 2019 Oct; 295():129-137. PubMed ID: 31174741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical note: Sampling methodology for relating sarcomere length, collagen concentration, and the extent of postmortem proteolysis to beef and pork longissimus tenderness.
    Wheeler TL; Shackelford SD; Koohmaraie M
    J Anim Sci; 2002 Apr; 80(4):982-7. PubMed ID: 12002335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First insights into the dynamic protein changes in goat Semitendinosus muscle during the post-mortem period using high-throughput proteomics.
    Lamri M; Della Malva A; Djenane D; Albenzio M; Gagaoua M
    Meat Sci; 2023 Aug; 202():109207. PubMed ID: 37150067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New developments in shockwave technology intended for meat tenderization: Opportunities and challenges. A review.
    Bolumar T; Enneking M; Toepfl S; Heinz V
    Meat Sci; 2013 Dec; 95(4):931-9. PubMed ID: 23660173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.