These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 34998197)
21. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
22. Osteogenic Potential of Mesenchymal Stem Cells from Adipose Tissue, Bone Marrow and Hair Follicle Outer Root Sheath in a 3D Crosslinked Gelatin-Based Hydrogel. Li H; Nawaz HA; Masieri FF; Vogel S; Hempel U; Bartella AK; Zimmerer R; Simon JC; Schulz-Siegmund M; Hacker M; Lethaus B; Savković V Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065598 [TBL] [Abstract][Full Text] [Related]
23. Polymeric Gelatin Scaffolds Affect Mesenchymal Stem Cell Differentiation and Its Diverse Applications in Tissue Engineering. Wang CY; Hong PD; Wang DH; Cherng JH; Chang SJ; Liu CC; Fang TJ; Wang YW Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33207764 [TBL] [Abstract][Full Text] [Related]
24. Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds. Ai C; Liu L; Goh JC Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112088. PubMed ID: 33947578 [TBL] [Abstract][Full Text] [Related]
25. Osteoinductivity of nanostructured hydroxyapatite-functionalized gelatin modulated by human and endogenous mesenchymal stromal cells. Della Bella E; Parrilli A; Bigi A; Panzavolta S; Amadori S; Giavaresi G; Martini L; Borsari V; Fini M J Biomed Mater Res A; 2018 Apr; 106(4):914-923. PubMed ID: 29143449 [TBL] [Abstract][Full Text] [Related]
26. [Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β Liu X; Wang Z; Xu C; Guan J; Wei B; Liu Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):904-912. PubMed ID: 34308601 [TBL] [Abstract][Full Text] [Related]
27. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Ye K; Liu D; Kuang H; Cai J; Chen W; Sun B; Xia L; Fang B; Morsi Y; Mo X J Colloid Interface Sci; 2019 Jan; 534():625-636. PubMed ID: 30265990 [TBL] [Abstract][Full Text] [Related]
28. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075 [TBL] [Abstract][Full Text] [Related]
29. Injectable and in situ crosslinkable gelatin microribbon hydrogels for stem cell delivery and bone regeneration Tang Y; Tong X; Conrad B; Yang F Theranostics; 2020; 10(13):6035-6047. PubMed ID: 32483436 [No Abstract] [Full Text] [Related]
30. Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo. Westhauser F; Weis C; Prokscha M; Bittrich LA; Li W; Xiao K; Kneser U; Kauczor HU; Schmidmaier G; Boccaccini AR; Moghaddam A J Mater Sci Mater Med; 2016 Jul; 27(7):119. PubMed ID: 27272901 [TBL] [Abstract][Full Text] [Related]
31. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092 [TBL] [Abstract][Full Text] [Related]
32. Chitosan/biphasic calcium phosphate scaffolds functionalized with BMP-2-encapsulated nanoparticles and RGD for bone regeneration. Gan D; Liu M; Xu T; Wang K; Tan H; Lu X J Biomed Mater Res A; 2018 Oct; 106(10):2613-2624. PubMed ID: 29790251 [TBL] [Abstract][Full Text] [Related]
33. In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells. Andalib N; Kehtari M; Seyedjafari E; Motamed N; Matin MM Cell Tissue Bank; 2021 Sep; 22(3):467-477. PubMed ID: 33398491 [TBL] [Abstract][Full Text] [Related]
34. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration. Sun J; Li L; Xing F; Yang Y; Gong M; Liu G; Wu S; Luo R; Duan X; Liu M; Zou M; Xiang Z Stem Cell Res Ther; 2021 Dec; 12(1):591. PubMed ID: 34863288 [TBL] [Abstract][Full Text] [Related]
35. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
36. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Ko E; Yang K; Shin J; Cho SW Biomacromolecules; 2013 Sep; 14(9):3202-13. PubMed ID: 23941596 [TBL] [Abstract][Full Text] [Related]
37. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration. Aquino-Martínez R; Angelo AP; Pujol FV Stem Cell Res Ther; 2017 Nov; 8(1):265. PubMed ID: 29145866 [TBL] [Abstract][Full Text] [Related]
38. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue. Kargozar S; Mozafari M; Hashemian SJ; Brouki Milan P; Hamzehlou S; Soleimani M; Joghataei MT; Gholipourmalekabadi M; Korourian A; Mousavizadeh K; Seifalian AM J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):61-72. PubMed ID: 27862947 [TBL] [Abstract][Full Text] [Related]
39. Mesenchymal Stem Cells Within Gelatin/CaSO4 Scaffolds Treated Ex Vivo with Low Doses of BMP-2 and Wnt3a Increase Bone Regeneration. Aquino-Martínez R; Rodríguez-Carballo E; Gámez B; Artigas N; Carvalho-Lobato P; Manzanares-Céspedes MC; Rosa JL; Ventura F Tissue Eng Part A; 2016 Jan; 22(1-2):41-52. PubMed ID: 26414873 [TBL] [Abstract][Full Text] [Related]
40. Gelatin coating increases in vivo bone formation capacity of three-dimensional 45S5 bioactive glass-based crystalline scaffolds. Westhauser F; Senger AS; Obert D; Ciraldo FE; Schuhladen K; Schmidmaier G; Moghaddam A; Boccaccini AR J Tissue Eng Regen Med; 2019 Feb; 13(2):179-190. PubMed ID: 30536622 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]