These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34998331)

  • 41. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.
    Zhang Q; Beard DA; Schlick T
    J Comput Chem; 2003 Dec; 24(16):2063-74. PubMed ID: 14531059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A model for sedimentation in inhomogeneous media. II. Compressibility of aqueous and organic solvents.
    Schuck P
    Biophys Chem; 2004 Mar; 108(1-3):201-14. PubMed ID: 15043930
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Local solvent density augmentation around a solute in supercritical solvent bath: 1. A mechanism explanation and a new phenomenon.
    Zhou S
    J Phys Chem B; 2005 Apr; 109(15):7522-8. PubMed ID: 16851863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of Charge-Augmented Three-Point Water Model (CAIPi3P) for Accurate Simulations of Intrinsically Disordered Proteins.
    de Souza JV; Zariquiey FS; Bronowska AK
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32859072
    [TBL] [Abstract][Full Text] [Related]  

  • 45. X-ray data collection from macromolecular crystals.
    Garman E; Sweet RM
    Methods Mol Biol; 2007; 364():63-94. PubMed ID: 17172761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Placevent: an algorithm for prediction of explicit solvent atom distribution-application to HIV-1 protease and F-ATP synthase.
    Sindhikara DJ; Yoshida N; Hirata F
    J Comput Chem; 2012 Jul; 33(18):1536-43. PubMed ID: 22522665
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fast and General Method To Predict the Physicochemical Properties of Druglike Molecules Using the Integral Equation Theory of Molecular Liquids.
    Palmer DS; MiĊĦin M; Fedorov MV; Llinas A
    Mol Pharm; 2015 Sep; 12(9):3420-32. PubMed ID: 26212723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory.
    Bardhan JP
    J Chem Phys; 2008 Oct; 129(14):144105. PubMed ID: 19045132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental Evidence of Solvent-Separated Ion Pairs as Metastable States in Electrostatic Interactions of Biological Macromolecules.
    Yu B; Pettitt BM; Iwahara J
    J Phys Chem Lett; 2019 Dec; 10(24):7937-7941. PubMed ID: 31809050
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An integral equation theory for inhomogeneous molecular fluids: the reference interaction site model approach.
    Ishizuka R; Chong SH; Hirata F
    J Chem Phys; 2008 Jan; 128(3):034504. PubMed ID: 18205507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-Dimensional RISM Integral Equation Theory for Polarizable Solute Models.
    Hoffgaard F; Heil J; Kast SM
    J Chem Theory Comput; 2013 Nov; 9(11):4718-26. PubMed ID: 26583390
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules.
    Prabhu NV; Panda M; Yang Q; Sharp KA
    J Comput Chem; 2008 May; 29(7):1113-30. PubMed ID: 18074338
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydration Properties and Solvent Effects for All-Atom Solutes in Polarizable Coarse-Grained Water.
    Yan XC; Tirado-Rives J; Jorgensen WL
    J Phys Chem B; 2016 Aug; 120(33):8102-14. PubMed ID: 26901452
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.
    Borbulevych OY; Plumley JA; Martin RI; Merz KM; Westerhoff LM
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1233-47. PubMed ID: 24816093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular-dynamics simulation methods for macromolecular crystallography.
    Wych DC; Aoto PC; Vu L; Wolff AM; Mobley DL; Fraser JS; Taylor SS; Wall ME
    Acta Crystallogr D Struct Biol; 2023 Jan; 79(Pt 1):50-65. PubMed ID: 36601807
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA and its ionic cloud: solution scattering experiments and atomically detailed simulations.
    Kirmizialtin S; Pabit SA; Meisburger SP; Pollack L; Elber R
    Biophys J; 2012 Feb; 102(4):819-28. PubMed ID: 22385853
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Implicit solvent methods for free energy estimation.
    Decherchi S; Masetti M; Vyalov I; Rocchia W
    Eur J Med Chem; 2015 Feb; 91():27-42. PubMed ID: 25193298
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes.
    Ferreira LA; Uversky VN; Zaslavsky BY
    Mol Biosyst; 2017 Nov; 13(12):2551-2563. PubMed ID: 29018861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.