BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34998916)

  • 1. Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy.
    Ni Q; Xu F; Wang Y; Li Y; Qing G; Zhang Y; Zhong J; Li J; Liang XJ
    J Control Release; 2022 Feb; 342():210-227. PubMed ID: 34998916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?
    Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y
    Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy.
    Yang J; Zhang C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1612. PubMed ID: 32114718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomaterials for T-cell cancer immunotherapy.
    Gong N; Sheppard NC; Billingsley MM; June CH; Mitchell MJ
    Nat Nanotechnol; 2021 Jan; 16(1):25-36. PubMed ID: 33437036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Stimuli-Responsive Platforms for Cancer Immunotherapy.
    Li L; Yang Z; Chen X
    Acc Chem Res; 2020 Oct; 53(10):2044-2054. PubMed ID: 32877161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Nanomaterials for Tumor Immune Microenvironment Modulation in Cancer Immunotherapy.
    Xing H; Li X
    Chemistry; 2024 Jun; 30(32):e202400425. PubMed ID: 38576219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspectives on Chimeric Antigen Receptor T-Cell Immunotherapy for Solid Tumors.
    Kosti P; Maher J; Arnold JN
    Front Immunol; 2018; 9():1104. PubMed ID: 29872437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JAK/STAT-Dependent Chimeric Antigen Receptor (CAR) Expression: A Design Benefiting From a Dual AND/OR Gate Aiming to Increase Specificity, Reduce Tumor Escape and Affect Tumor Microenvironment.
    Khanali J; Azangou-Khyavy M; Boroomand-Saboor M; Ghasemi M; Niknejad H
    Front Immunol; 2021; 12():638639. PubMed ID: 34177890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomaterial-Based Modulation of Tumor Microenvironments for Enhancing Chemo/Immunotherapy.
    Le QV; Suh J; Oh YK
    AAPS J; 2019 May; 21(4):64. PubMed ID: 31102154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme.
    Marei HE; Althani A; Afifi N; Hasan A; Caceci T; Pozzoli G; Cenciarelli C
    Cancer Med; 2021 Aug; 10(15):5019-5030. PubMed ID: 34145792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune Checkpoints and CAR-T Cells: The Pioneers in Future Cancer Therapies?
    Hosseinkhani N; Derakhshani A; Kooshkaki O; Abdoli Shadbad M; Hajiasgharzadeh K; Baghbanzadeh A; Safarpour H; Mokhtarzadeh A; Brunetti O; Yue SC; Silvestris N; Baradaran B
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoengineered CAR-T Biohybrids for Solid Tumor Immunotherapy with Microenvironment Photothermal-Remodeling Strategy.
    Chen Z; Pan H; Luo Y; Yin T; Zhang B; Liao J; Wang M; Tang X; Huang G; Deng G; Zheng M; Cai L
    Small; 2021 Apr; 17(14):e2007494. PubMed ID: 33711191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomaterials: Breaking through the bottleneck of tumor immunotherapy.
    Kang Y; Li S
    Int J Biol Macromol; 2023 Mar; 230():123159. PubMed ID: 36610572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimeric Antigen Receptor Therapy: How Are We Driving in Solid Tumors?
    Greenbaum U; Yalniz FF; Srour SA; Rezvani K; Singh H; Olson A; Blumenschein G; Hong DS; Shpall EJ; Kebriaei P
    Biol Blood Marrow Transplant; 2020 Oct; 26(10):1759-1769. PubMed ID: 32623078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Chimeric Antigen Receptor T-Cell Efficacy in Solid Tumors.
    FucĂ  G; Reppel L; Landoni E; Savoldo B; Dotti G
    Clin Cancer Res; 2020 Jun; 26(11):2444-2451. PubMed ID: 32015021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterials for cancer immunotherapy.
    Song W; Musetti SN; Huang L
    Biomaterials; 2017 Dec; 148():16-30. PubMed ID: 28961532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment.
    Zhao Z; Xiao X; Saw PE; Wu W; Huang H; Chen J; Nie Y
    Sci China Life Sci; 2020 Feb; 63(2):180-205. PubMed ID: 31883066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.
    Zhang BL; Qin DY; Mo ZM; Li Y; Wei W; Wang YS; Wang W; Wei YQ
    Sci China Life Sci; 2016 Apr; 59(4):340-8. PubMed ID: 26965525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.