These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 34998929)
1. PanClassif: Improving pan cancer classification of single cell RNA-seq gene expression data using machine learning. Mahin KF; Robiuddin M; Islam M; Ashraf S; Yeasmin F; Shatabda S Genomics; 2022 Mar; 114(2):110264. PubMed ID: 34998929 [TBL] [Abstract][Full Text] [Related]
2. CTISL: a dynamic stacking multi-class classification approach for identifying cell types from single-cell RNA-seq data. Wang X; Chai Z; Li S; Liu Y; Li C; Jiang Y; Liu Q Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317054 [TBL] [Abstract][Full Text] [Related]
3. Cancer classification of single-cell gene expression data by neural network. Kim BH; Yu K; Lee PCW Bioinformatics; 2020 Mar; 36(5):1360-1366. PubMed ID: 31603465 [TBL] [Abstract][Full Text] [Related]
5. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data. Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008 [TBL] [Abstract][Full Text] [Related]
6. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data. Franks JM; Cai G; Whitfield ML Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996 [TBL] [Abstract][Full Text] [Related]
7. Biological classification with RNA-seq data: Can alternatively spliced transcript expression enhance machine learning classifiers? Johnson NT; Dhroso A; Hughes KJ; Korkin D RNA; 2018 Sep; 24(9):1119-1132. PubMed ID: 29941426 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning Analysis of RNA-seq Data for Diagnostic and Prognostic Prediction of Colon Cancer. Bostanci E; Kocak E; Unal M; Guzel MS; Acici K; Asuroglu T Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991790 [TBL] [Abstract][Full Text] [Related]
9. scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer. Shen Y; Chu Q; Timko MP; Fan L Bioinformatics; 2021 Nov; 37(22):4115-4122. PubMed ID: 34048541 [TBL] [Abstract][Full Text] [Related]
10. scReClassify: post hoc cell type classification of single-cell rNA-seq data. Kim T; Lo K; Geddes TA; Kim HJ; Yang JYH; Yang P BMC Genomics; 2019 Dec; 20(Suppl 9):913. PubMed ID: 31874628 [TBL] [Abstract][Full Text] [Related]
11. A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies. Van R; Alvarez D; Mize T; Gannavarapu S; Chintham Reddy L; Nasoz F; Han MV BMC Bioinformatics; 2024 May; 25(1):181. PubMed ID: 38720247 [TBL] [Abstract][Full Text] [Related]
12. DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning. Kakati T; Bhattacharyya DK; Kalita JK; Norden-Krichmar TM BMC Bioinformatics; 2022 Jan; 23(1):17. PubMed ID: 34991439 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive simulation study on classification of RNA-Seq data. Zararsız G; Goksuluk D; Korkmaz S; Eldem V; Zararsiz GE; Duru IP; Ozturk A PLoS One; 2017; 12(8):e0182507. PubMed ID: 28832679 [TBL] [Abstract][Full Text] [Related]
14. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
16. Pan-cancer discovery of somatic mutations from RNA sequencing data. Tang G; Liu X; Cho M; Li Y; Tran DH; Wang X Commun Biol; 2024 May; 7(1):619. PubMed ID: 38783092 [TBL] [Abstract][Full Text] [Related]
17. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters. Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249 [TBL] [Abstract][Full Text] [Related]
18. scCancer2: data-driven in-depth annotations of the tumor microenvironment at single-level resolution. Chen Z; Miao Y; Tan Z; Hu Q; Wu Y; Li X; Guo W; Gu J Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38243719 [TBL] [Abstract][Full Text] [Related]
19. Automated annotation of rare-cell types from single-cell RNA-sequencing data through synthetic oversampling. Bej S; Galow AM; David R; Wolfien M; Wolkenhauer O BMC Bioinformatics; 2021 Nov; 22(1):557. PubMed ID: 34798805 [TBL] [Abstract][Full Text] [Related]
20. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]