BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34999019)

  • 1. Genomic footprints of sorghum domestication and breeding selection for multiple end uses.
    Wu X; Liu Y; Luo H; Shang L; Leng C; Liu Z; Li Z; Lu X; Cai H; Hao H; Jing HC
    Mol Plant; 2022 Mar; 15(3):537-551. PubMed ID: 34999019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Architecture of domestication- and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor.
    Liu H; Liu H; Zhou L; Lin Z
    Plant Sci; 2019 Jun; 283():135-146. PubMed ID: 31128683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population genomic and genome-wide association studies of agroclimatic traits in sorghum.
    Morris GP; Ramu P; Deshpande SP; Hash CT; Shah T; Upadhyaya HD; Riera-Lizarazu O; Brown PJ; Acharya CB; Mitchell SE; Harriman J; Glaubitz JC; Buckler ES; Kresovich S
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):453-8. PubMed ID: 23267105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy.
    Campbell BC; Gilding EK; Mace ES; Tai S; Tao Y; Prentis PJ; Thomelin P; Jordan DR; Godwin ID
    Plant Biotechnol J; 2016 Dec; 14(12):2240-2253. PubMed ID: 27155090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement.
    Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L
    BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history.
    Li Y; Cao K; Zhu G; Fang W; Chen C; Wang X; Zhao P; Guo J; Ding T; Guan L; Zhang Q; Guo W; Fei Z; Wang L
    Genome Biol; 2019 Feb; 20(1):36. PubMed ID: 30791928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Largely unlinked gene sets targeted by selection for domestication syndrome phenotypes in maize and sorghum.
    Lai X; Yan L; Lu Y; Schnable JC
    Plant J; 2018 Mar; 93(5):843-855. PubMed ID: 29265526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array.
    Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ
    Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism.
    Cooper EA; Brenton ZW; Flinn BS; Jenkins J; Shu S; Flowers D; Luo F; Wang Y; Xia P; Barry K; Daum C; Lipzen A; Yoshinaga Y; Schmutz J; Saski C; Vermerris W; Kresovich S
    BMC Genomics; 2019 May; 20(1):420. PubMed ID: 31133004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic footprints of Kam Sweet Rice domestication indicate possible migration routes of the Dong people in China and provide resources for future rice breeding.
    Liu C; Wang T; Chen H; Ma X; Jiao C; Cui D; Han B; Li X; Jiao A; Ruan R; Xue D; Wang Y; Han L
    Mol Plant; 2023 Feb; 16(2):415-431. PubMed ID: 36578210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic architecture of leaf senescence in sorghum (Sorghum bicolor).
    Wang L; Shang L; Wu X; Hao H; Jing HC
    Theor Appl Genet; 2023 Mar; 136(3):45. PubMed ID: 36905488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and Domestication Footprints Uncovered from the Genomes of Coix.
    Liu H; Shi J; Cai Z; Huang Y; Lv M; Du H; Gao Q; Zuo Y; Dong Z; Huang W; Qin R; Liang C; Lai J; Jin W
    Mol Plant; 2020 Feb; 13(2):295-308. PubMed ID: 31778842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population genomics of sorghum (Sorghum bicolor) across diverse agroclimatic zones of Niger.
    Maina F; Bouchet S; Marla SR; Hu Z; Wang J; Mamadou A; Abdou M; Saïdou AA; Morris GP
    Genome; 2018 Apr; 61(4):223-232. PubMed ID: 29432699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population genomic analysis reveals domestication of cultivated rye from weedy rye.
    Sun Y; Shen E; Hu Y; Wu D; Feng Y; Lao S; Dong C; Du T; Hua W; Ye CY; Zhu J; Zhu QH; Cai D; Skuza L; Qiu J; Fan L
    Mol Plant; 2022 Mar; 15(3):552-561. PubMed ID: 34971791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorghum Association Panel whole-genome sequencing establishes cornerstone resource for dissecting genomic diversity.
    Boatwright JL; Sapkota S; Jin H; Schnable JC; Brenton Z; Boyles R; Kresovich S
    Plant J; 2022 Aug; 111(3):888-904. PubMed ID: 35653240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorghum: A Multipurpose Crop.
    Zheng H; Dang Y; Sui N
    J Agric Food Chem; 2023 Nov; 71(46):17570-17583. PubMed ID: 37933850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic Selection for Antioxidant Production in a Panel of
    Habyarimana E; Lopez-Cruz M
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31653099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic architecture and molecular regulation of sorghum domestication.
    Ge F; Xie P; Wu Y; Xie Q
    aBIOTECH; 2023 Mar; 4(1):57-71. PubMed ID: 37220542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorghum breeding in the genomic era: opportunities and challenges.
    Hao H; Li Z; Leng C; Lu C; Luo H; Liu Y; Wu X; Liu Z; Shang L; Jing HC
    Theor Appl Genet; 2021 Jul; 134(7):1899-1924. PubMed ID: 33655424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hard versus soft selective sweeps during domestication and improvement in soybean.
    Zhong L; Zhu Y; Olsen KM
    Mol Ecol; 2022 Jun; 31(11):3137-3153. PubMed ID: 35366022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.