These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34999063)
21. Poaceae pollen as the leading aeroallergen worldwide: A review. García-Mozo H Allergy; 2017 Dec; 72(12):1849-1858. PubMed ID: 28543717 [TBL] [Abstract][Full Text] [Related]
22. On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia. de Morton J; Bye J; Pezza A; Newbigin E Int J Biometeorol; 2011 Jul; 55(4):613-22. PubMed ID: 20814699 [TBL] [Abstract][Full Text] [Related]
23. Forecasting of the selected features of Poaceae (R. Br.) Barnh., Artemisia L. and Ambrosia L. pollen season in Szczecin, north-western Poland, using Gumbel's distribution. Puc M; Wolski T Ann Agric Environ Med; 2013; 20(1):36-47. PubMed ID: 23540210 [TBL] [Abstract][Full Text] [Related]
24. Airborne study of grass allergen (Lol p 1) in different-sized particles. De Linares C; Díaz de la Guardia C; Nieto Lugilde D; Alba F Int Arch Allergy Immunol; 2010; 152(1):49-57. PubMed ID: 19940505 [TBL] [Abstract][Full Text] [Related]
25. Poaceae pollen in the air depending on the thermal conditions. Myszkowska D Int J Biometeorol; 2014 Jul; 58(5):975-86. PubMed ID: 23793956 [TBL] [Abstract][Full Text] [Related]
26. Pollen aeroallergens in the Washington, DC, metropolitan area: a 10-year volumetric survey (1998-2007). Kosisky SE; Marks MS; Nelson MR Ann Allergy Asthma Immunol; 2010 Mar; 104(3):223-35. PubMed ID: 20377112 [TBL] [Abstract][Full Text] [Related]
27. [Lawn grass (Poaceae) causing hayfever in the South Plain of Hungary. Results of aeropalinologic and allergologic studies 1989-95]. Kadocsa E; Juhász M Orv Hetil; 1997 Apr; 138(14):851-4. PubMed ID: 9162893 [TBL] [Abstract][Full Text] [Related]
28. Seasonal variations of allergenic pollen in a Mediterranean region - Alexandroupolis, north-east Greece. Nikolaidis C; Katotomichelakis M; Nena E; Makris M; Tsakas M; Michopoulos I; Constantinidis TC; Danielides V Ann Agric Environ Med; 2015; 22(4):685-9. PubMed ID: 26706978 [TBL] [Abstract][Full Text] [Related]
29. The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. Sánchez Mesa JA; Galán C; Hervás C Int J Biometeorol; 2005 Jul; 49(6):355-62. PubMed ID: 15789221 [TBL] [Abstract][Full Text] [Related]
30. A comparative, volumetric survey of airborne pollen in Philadelphia, Pennsylvania (1991-1997) and Cherry Hill, New Jersey (1995-1997). Dvorin DJ; Lee JJ; Belecanech GA; Goldstein MF; Dunsky EH Ann Allergy Asthma Immunol; 2001 Nov; 87(5):394-404. PubMed ID: 11730182 [TBL] [Abstract][Full Text] [Related]
31. Three-year pollen and fungi calendar in a Mediterranean region of the Northeast Greece. Katsimpris P; Nikolaidis C; Deftereou TE; Balatsouras D; Printza A; Iliou T; Alexiadis T; Chatzisouleiman I; Samara M; Constantinidis J; Lambropoulou M; Katotomichelakis M Allergol Immunopathol (Madr); 2022; 50(2):65-74. PubMed ID: 35257547 [TBL] [Abstract][Full Text] [Related]
32. Pollen season trends as markers of climate change impact: Betula, Quercus and Poaceae. Adams-Groom B; Selby K; Derrett S; Frisk CA; Pashley CH; Satchwell J; King D; McKenzie G; Neilson R Sci Total Environ; 2022 Jul; 831():154882. PubMed ID: 35364159 [TBL] [Abstract][Full Text] [Related]
33. Influence of airborne pollen counts and length of pollen season of selected allergenic plants on the concentration of sIgE antibodies on the population of Bratislava, Slovakia. Ščevková J; Dušička J; Hrubiško M; Mičieta K Ann Agric Environ Med; 2015; 22(3):451-5. PubMed ID: 26403113 [TBL] [Abstract][Full Text] [Related]
34. The influence of temperature, relative humidity and rainfall on the occurrence of pollen allergens (Betula, Poaceae, Ambrosia artemisiifolia) in the atmosphere of Bratislava (Slovakia). Bartková-Scevková J Int J Biometeorol; 2003 Sep; 48(1):1-5. PubMed ID: 12690548 [TBL] [Abstract][Full Text] [Related]
35. Annual and intradiurnal variation of dominant airborne pollen and the effects of meteorological factors in Çeşme (Izmir, Turkey). Uguz U; Guvensen A; Tort NS Environ Monit Assess; 2017 Sep; 189(10):530. PubMed ID: 28965257 [TBL] [Abstract][Full Text] [Related]
36. Urban atmospheric levels of allergenic pollen: comparison of two locations in Salamanca, Central-Western Spain. Antón SF; de la Cruz DR; Sánchez AG; Dávila I; Sánchez Sánchez J; Sánchez Reyes E Environ Monit Assess; 2020 Jun; 192(7):414. PubMed ID: 32500317 [TBL] [Abstract][Full Text] [Related]
37. Pollen grains as allergenic environmental factors--new approach to the forecasting of the pollen concentration during the season. Myszkowska D; Majewska R Ann Agric Environ Med; 2014; 21(4):681-8. PubMed ID: 25528901 [TBL] [Abstract][Full Text] [Related]
38. Airborne pollen calendar of Lublin, Poland. Weryszko-Chmielewska E; Piotrowska K Ann Agric Environ Med; 2004; 11(1):91-7. PubMed ID: 15236504 [TBL] [Abstract][Full Text] [Related]
39. Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen. Puc M Ann Agric Environ Med; 2012; 19(4):660-5. PubMed ID: 23311785 [TBL] [Abstract][Full Text] [Related]
40. Forecast models for start and peak dates of Poaceae pollen season in Tétouan (NW Morocco) using multiple regression analysis. Raissouni I; Achmakh L; Boullayali A; Bouziane H Int J Biometeorol; 2024 Nov; 68(11):2215-2225. PubMed ID: 39060702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]