These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 34999195)
41. N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH. Chen J; Wang L; Zheng J; Chen J Bioprocess Biosyst Eng; 2015 Jul; 38(7):1373-80. PubMed ID: 25698260 [TBL] [Abstract][Full Text] [Related]
42. Inhibition of ferrous iron (Fe Pang Y; Wang J Bioresour Technol; 2021 Dec; 342():125960. PubMed ID: 34560437 [TBL] [Abstract][Full Text] [Related]
43. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. Kumar S; Herrmann M; Blohm A; Hilke I; Frosch T; Trumbore SE; Küsel K FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30052889 [TBL] [Abstract][Full Text] [Related]
44. Electron transfer mechanism of biocathode in a bioelectrochemical system coupled with chemical absorption for NO removal. Zhao J; Zhang C; Sun C; Li W; Zhang S; Li S; Zhang D Bioresour Technol; 2018 Apr; 254():16-22. PubMed ID: 29413918 [TBL] [Abstract][Full Text] [Related]
45. A comparative study on denitrifying sludge granulation with different electron donors: Sulfide, thiosulfate and organics. Qian J; Wei L; Wu Y; Wang Q; Fu X; Zhang X; Chang X; Wang L; Pei X Chemosphere; 2017 Nov; 186():322-330. PubMed ID: 28797950 [TBL] [Abstract][Full Text] [Related]
46. Denitrifying kinetics and nitrous oxide emission under different copper concentrations. Wu G; Zhai X; Jiang C; Guan Y Water Sci Technol; 2014; 69(4):746-54. PubMed ID: 24569272 [TBL] [Abstract][Full Text] [Related]
47. Increase of N Li S; Pang Y; Ji G Environ Pollut; 2021 Dec; 291():118231. PubMed ID: 34571071 [TBL] [Abstract][Full Text] [Related]
48. N Liu Q; Li X; Wu M; Huang H; Chen Y Sci Total Environ; 2024 Oct; 946():174231. PubMed ID: 38917909 [TBL] [Abstract][Full Text] [Related]
49. Mercury oxidation coupled to autotrophic denitrifying branched sulfur oxidation and sulfur disproportionation for simultaneous removal of Hg Huang Z; Tan XQ; Wei ZS; Jiao HY; Xiao XL; Ming S Appl Microbiol Biotechnol; 2020 Oct; 104(19):8489-8504. PubMed ID: 32808049 [TBL] [Abstract][Full Text] [Related]
50. Insight into the mechanism of chemoautotrophic denitrification using pyrite (FeS Pang Y; Wang J Bioresour Technol; 2020 Dec; 318():124105. PubMed ID: 32932113 [TBL] [Abstract][Full Text] [Related]
51. Response mechanism of different electron donors for treating secondary effluent in ecological floating bed. Sun S; Gu X; Zhang M; Tang L; He S Bioresour Technol; 2021 Jul; 332():125083. PubMed ID: 33826983 [TBL] [Abstract][Full Text] [Related]
52. New insights into nitrous oxide emissions in a single-stage CANON process coupled with denitrification: thermodynamics and nitrogen transformation. Fang F; Li K; Guo JS; Wang H; Zhang P; Yan P Water Sci Technol; 2020 Jul; 82(1):157-169. PubMed ID: 32910800 [TBL] [Abstract][Full Text] [Related]
53. Heterotrophic denitrifiers growing on soluble microbial products contribute to nitrous oxide production in anammox biofilm: Model evaluation. Peng L; Ngo HH; Song S; Xu Y; Guo W; Liu Y; Wei W; Chen X; Wang D; Ni BJ J Environ Manage; 2019 Jul; 242():309-314. PubMed ID: 31054395 [TBL] [Abstract][Full Text] [Related]
54. N Xiao P; Ai S; Zhou J; Luo X; Kang B; Feng L; Zhao T Environ Sci Pollut Res Int; 2020 Oct; 27(30):37188-37198. PubMed ID: 31748991 [TBL] [Abstract][Full Text] [Related]
55. Denitrification kinetics indicates nitrous oxide uptake is unaffected by electron competition in Accumulibacter. Roy S; Nirakar P; Yong NGH; Stefan W Water Res; 2021 Feb; 189():116557. PubMed ID: 33220610 [TBL] [Abstract][Full Text] [Related]
56. Nitric oxide reduction in BioDeNOx reactors: kinetics and mechanism. van der Maas P; Manconi I; Klapwijk B; Lens P Biotechnol Bioeng; 2008 Aug; 100(6):1099-107. PubMed ID: 18553393 [TBL] [Abstract][Full Text] [Related]
57. Missing aerobic-phase nitrogen: The potential for heterotrophic reduction of autotrophically generated nitrous oxide in a sequencing batch reactor wastewater treatment system. Shiskowskii DM; Mavinic DS Environ Technol; 2005 Aug; 26(8):843-56. PubMed ID: 16128383 [TBL] [Abstract][Full Text] [Related]
58. Use of elemental sulfur and thiosulfate as electron sources for water denitrification. Sahinkaya E; Dursun N Bioprocess Biosyst Eng; 2015 Mar; 38(3):531-41. PubMed ID: 25266591 [TBL] [Abstract][Full Text] [Related]
59. Positive impact of a reducing agent on autotrophic nitrogen removal process and nexus of nitrous oxide emission in an anaerobic downflow hanging sponge reactor. Tran P T; Hatamoto M; Tsuba D; Watari T; Yamaguchi T Chemosphere; 2020 Oct; 256():126952. PubMed ID: 32428737 [TBL] [Abstract][Full Text] [Related]
60. Sulfur-based autotrophic denitrification from the micro-polluted water. Zhou W; Liu X; Dong X; Wang Z; Yuan Y; Wang H; He S J Environ Sci (China); 2016 Jun; 44():180-188. PubMed ID: 27266314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]